This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for general well-founded recursion. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem15.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| frrlem15.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
| Assertion | frrlem15 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem15.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | frrlem15.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑢 ∈ V | |
| 5 | 3 4 | breldm | ⊢ ( 𝑥 𝑔 𝑢 → 𝑥 ∈ dom 𝑔 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑥 ∈ dom 𝑔 ) |
| 7 | vex | ⊢ 𝑣 ∈ V | |
| 8 | 3 7 | breldm | ⊢ ( 𝑥 ℎ 𝑣 → 𝑥 ∈ dom ℎ ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑥 ∈ dom ℎ ) |
| 10 | 6 9 | elind | ⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) |
| 11 | id | ⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) | |
| 12 | 4 | brresi | ⊢ ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ↔ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ) |
| 13 | 7 | brresi | ⊢ ( 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ↔ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) |
| 14 | 12 13 | anbi12i | ⊢ ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ∧ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) ) |
| 15 | an4 | ⊢ ( ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 𝑔 𝑢 ) ∧ ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ℎ 𝑣 ) ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) ∧ ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ↔ ( ( 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑥 ∈ ( dom 𝑔 ∩ dom ℎ ) ) ∧ ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) ) ) |
| 17 | 10 10 11 16 | syl21anbrc | ⊢ ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
| 18 | inss1 | ⊢ ( dom 𝑔 ∩ dom ℎ ) ⊆ dom 𝑔 | |
| 19 | 1 | frrlem3 | ⊢ ( 𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴 ) |
| 20 | 18 19 | sstrid | ⊢ ( 𝑔 ∈ 𝐵 → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
| 22 | simpll | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Fr 𝐴 ) | |
| 23 | frss | ⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 Fr 𝐴 → 𝑅 Fr ( dom 𝑔 ∩ dom ℎ ) ) ) | |
| 24 | 21 22 23 | sylc | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Fr ( dom 𝑔 ∩ dom ℎ ) ) |
| 25 | simplr | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Se 𝐴 ) | |
| 26 | sess2 | ⊢ ( ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 → ( 𝑅 Se 𝐴 → 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ) | |
| 27 | 21 25 26 | sylc | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) |
| 28 | 1 | frrlem4 | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
| 30 | 1 | frrlem4 | ⊢ ( ( ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ∧ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) ) |
| 31 | incom | ⊢ ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) | |
| 32 | 31 | reseq2i | ⊢ ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) |
| 33 | fneq12 | ⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ∧ ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ↔ ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ) ) | |
| 34 | 32 31 33 | mp2an | ⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ↔ ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ) |
| 35 | 32 | fveq1i | ⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) |
| 36 | predeq2 | ⊢ ( ( dom 𝑔 ∩ dom ℎ ) = ( dom ℎ ∩ dom 𝑔 ) → Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) | |
| 37 | 31 36 | ax-mp | ⊢ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) = Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) |
| 38 | 32 37 | reseq12i | ⊢ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) = ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) |
| 39 | 38 | oveq2i | ⊢ ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) |
| 40 | 35 39 | eqeq12i | ⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ↔ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) |
| 41 | 31 40 | raleqbii | ⊢ ( ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ↔ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) |
| 42 | 34 41 | anbi12i | ⊢ ( ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ↔ ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) Fn ( dom ℎ ∩ dom 𝑔 ) ∧ ∀ 𝑎 ∈ ( dom ℎ ∩ dom 𝑔 ) ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom ℎ ∩ dom 𝑔 ) ) ↾ Pred ( 𝑅 , ( dom ℎ ∩ dom 𝑔 ) , 𝑎 ) ) ) ) ) |
| 43 | 30 42 | sylibr | ⊢ ( ( ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
| 44 | 43 | ancoms | ⊢ ( ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) |
| 46 | frr3g | ⊢ ( ( ( 𝑅 Fr ( dom 𝑔 ∩ dom ℎ ) ∧ 𝑅 Se ( dom 𝑔 ∩ dom ℎ ) ) ∧ ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ∧ ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) Fn ( dom 𝑔 ∩ dom ℎ ) ∧ ∀ 𝑎 ∈ ( dom 𝑔 ∩ dom ℎ ) ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ‘ 𝑎 ) = ( 𝑎 𝐺 ( ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↾ Pred ( 𝑅 , ( dom 𝑔 ∩ dom ℎ ) , 𝑎 ) ) ) ) ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) | |
| 47 | 24 27 29 45 46 | syl211anc | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) = ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 48 | 47 | breqd | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ↔ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
| 49 | 48 | biimprd | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 → 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) ) |
| 50 | 1 | frrlem2 | ⊢ ( 𝑔 ∈ 𝐵 → Fun 𝑔 ) |
| 51 | 50 | funresd | ⊢ ( 𝑔 ∈ 𝐵 → Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 52 | 51 | ad2antrl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ) |
| 53 | dffun2 | ⊢ ( Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ↔ ( Rel ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) ∧ ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) ) | |
| 54 | 2sp | ⊢ ( ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 55 | 54 | sps | ⊢ ( ∀ 𝑥 ∀ 𝑢 ∀ 𝑣 ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 56 | 53 55 | simplbiim | ⊢ ( Fun ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 57 | 52 56 | syl | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 58 | 49 57 | sylan2d | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 ( 𝑔 ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑢 ∧ 𝑥 ( ℎ ↾ ( dom 𝑔 ∩ dom ℎ ) ) 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 59 | 17 58 | syl5 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |