This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law of general well-founded recursion, part two. Now we establish the value of F within A . (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| Assertion | frr2 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 2 | 1 | frr1 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 3 | 2 | fndmd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → dom 𝐹 = 𝐴 ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴 ) ) |
| 5 | 4 | pm5.32i | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ↔ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) ) |
| 6 | fveq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 7 | id | ⊢ ( 𝑦 = 𝑋 → 𝑦 = 𝑋 ) | |
| 8 | predeq3 | ⊢ ( 𝑦 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑦 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 9 | 8 | reseq2d | ⊢ ( 𝑦 = 𝑋 → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) = ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 10 | 7 9 | oveq12d | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| 11 | 6 10 | eqeq12d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑦 = 𝑋 → ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ↔ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) ) ) |
| 13 | eqid | ⊢ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } | |
| 14 | 13 | frrlem1 | ⊢ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 15 | 14 1 | frrlem15 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ ( 𝑔 ∈ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } ∧ ℎ ∈ { 𝑎 ∣ ∃ 𝑏 ( 𝑎 Fn 𝑏 ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑐 ) ⊆ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑏 ( 𝑎 ‘ 𝑐 ) = ( 𝑐 𝐺 ( 𝑎 ↾ Pred ( 𝑅 , 𝐴 , 𝑐 ) ) ) ) } ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 16 | 14 1 15 | frrlem10 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) |
| 17 | 16 | expcom | ⊢ ( 𝑦 ∈ dom 𝐹 → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) ) |
| 18 | 12 17 | vtoclga | ⊢ ( 𝑋 ∈ dom 𝐹 → ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) ) |
| 19 | 18 | impcom | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| 20 | 5 19 | sylbir | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |