This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law of well-founded recursion over a partial order, part two. Now we establish the value of F within A . (Contributed by Scott Fenton, 11-Sep-2023) (Proof shortened by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fprr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| Assertion | fpr2 | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprr.1 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 2 | 1 | fpr1 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 3 | 2 | fndmd | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → dom 𝐹 = 𝐴 ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴 ) ) |
| 5 | 4 | biimpar | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ dom 𝐹 ) |
| 6 | 1 | fpr2a | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
| 7 | 5 6 | syldan | ⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |