This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A free monoid is a monoid. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| Assertion | frmdmnd | ⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | eqidd | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) ) | |
| 3 | eqidd | ⊢ ( 𝐼 ∈ 𝑉 → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 6 | 1 4 5 | frmdadd | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
| 7 | 1 4 | frmdelbas | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑀 ) → 𝑥 ∈ Word 𝐼 ) |
| 8 | 1 4 | frmdelbas | ⊢ ( 𝑦 ∈ ( Base ‘ 𝑀 ) → 𝑦 ∈ Word 𝐼 ) |
| 9 | ccatcl | ⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼 ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) |
| 11 | 6 10 | eqeltrd | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐼 ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ Word 𝐼 ) |
| 13 | 1 4 | frmdbas | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 15 | 12 14 | eleqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 16 | simpr1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) | |
| 17 | 16 7 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ Word 𝐼 ) |
| 18 | simpr2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) | |
| 19 | 18 8 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ Word 𝐼 ) |
| 20 | simpr3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑀 ) ) | |
| 21 | 1 4 | frmdelbas | ⊢ ( 𝑧 ∈ ( Base ‘ 𝑀 ) → 𝑧 ∈ Word 𝐼 ) |
| 22 | 20 21 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑧 ∈ Word 𝐼 ) |
| 23 | ccatass | ⊢ ( ( 𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) | |
| 24 | 17 19 22 23 | syl3anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) |
| 25 | 16 18 10 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ++ 𝑦 ) ∈ Word 𝐼 ) |
| 26 | 13 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 27 | 25 26 | eleqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ++ 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 28 | 1 4 5 | frmdadd | ⊢ ( ( ( 𝑥 ++ 𝑦 ) ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) ) |
| 29 | 27 20 28 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ++ 𝑦 ) ++ 𝑧 ) ) |
| 30 | ccatcl | ⊢ ( ( 𝑦 ∈ Word 𝐼 ∧ 𝑧 ∈ Word 𝐼 ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) | |
| 31 | 19 22 30 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ++ 𝑧 ) ∈ Word 𝐼 ) |
| 32 | 31 26 | eleqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ++ 𝑧 ) ∈ ( Base ‘ 𝑀 ) ) |
| 33 | 1 4 5 | frmdadd | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ( 𝑦 ++ 𝑧 ) ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) |
| 34 | 16 32 33 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) = ( 𝑥 ++ ( 𝑦 ++ 𝑧 ) ) ) |
| 35 | 24 29 34 | 3eqtr4d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) ) |
| 36 | 16 18 6 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ++ 𝑦 ) ) |
| 37 | 36 | oveq1d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ++ 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 38 | 1 4 5 | frmdadd | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
| 39 | 18 20 38 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ++ 𝑧 ) ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ++ 𝑧 ) ) ) |
| 41 | 35 37 40 | 3eqtr4d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 42 | wrd0 | ⊢ ∅ ∈ Word 𝐼 | |
| 43 | 42 13 | eleqtrrid | ⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ ( Base ‘ 𝑀 ) ) |
| 44 | 1 4 5 | frmdadd | ⊢ ( ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
| 45 | 43 44 | sylan | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
| 46 | 7 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ Word 𝐼 ) |
| 47 | ccatlid | ⊢ ( 𝑥 ∈ Word 𝐼 → ( ∅ ++ 𝑥 ) = 𝑥 ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ++ 𝑥 ) = 𝑥 ) |
| 49 | 45 48 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 50 | 1 4 5 | frmdadd | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∅ ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
| 51 | 50 | ancoms | ⊢ ( ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
| 52 | 43 51 | sylan | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
| 53 | ccatrid | ⊢ ( 𝑥 ∈ Word 𝐼 → ( 𝑥 ++ ∅ ) = 𝑥 ) | |
| 54 | 46 53 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ++ ∅ ) = 𝑥 ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = 𝑥 ) |
| 56 | 2 3 15 41 43 49 55 | ismndd | ⊢ ( 𝐼 ∈ 𝑉 → 𝑀 ∈ Mnd ) |