This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| ismhm.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| ismhm.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| ismhm.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| ismhm.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| ismhm.y | ⊢ 𝑌 = ( 0g ‘ 𝑇 ) | ||
| Assertion | ismhm | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | ismhm.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | ismhm.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 4 | ismhm.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 5 | ismhm.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 6 | ismhm.y | ⊢ 𝑌 = ( 0g ‘ 𝑇 ) | |
| 7 | df-mhm | ⊢ MndHom = ( 𝑠 ∈ Mnd , 𝑡 ∈ Mnd ↦ { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } ) | |
| 8 | 7 | elmpocl | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ) |
| 9 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = ( Base ‘ 𝑇 ) ) | |
| 10 | 9 2 | eqtr4di | ⊢ ( 𝑡 = 𝑇 → ( Base ‘ 𝑡 ) = 𝐶 ) |
| 11 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) | |
| 12 | 11 1 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 13 | 10 12 | oveqan12rd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) = ( 𝐶 ↑m 𝐵 ) ) |
| 14 | 12 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 15 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = ( +g ‘ 𝑆 ) ) | |
| 16 | 15 3 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( +g ‘ 𝑠 ) = + ) |
| 17 | 16 | oveqd | ⊢ ( 𝑠 = 𝑆 → ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ( +g ‘ 𝑇 ) ) | |
| 20 | 19 4 | eqtr4di | ⊢ ( 𝑡 = 𝑇 → ( +g ‘ 𝑡 ) = ⨣ ) |
| 21 | 20 | oveqd | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) |
| 22 | 18 21 | eqeqan12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 23 | 14 22 | raleqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 24 | 14 23 | raleqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( 0g ‘ 𝑠 ) = ( 0g ‘ 𝑆 ) ) | |
| 26 | 25 5 | eqtr4di | ⊢ ( 𝑠 = 𝑆 → ( 0g ‘ 𝑠 ) = 0 ) |
| 27 | 26 | fveq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 𝑓 ‘ 0 ) ) |
| 28 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( 0g ‘ 𝑡 ) = ( 0g ‘ 𝑇 ) ) | |
| 29 | 28 6 | eqtr4di | ⊢ ( 𝑡 = 𝑇 → ( 0g ‘ 𝑡 ) = 𝑌 ) |
| 30 | 27 29 | eqeqan12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ↔ ( 𝑓 ‘ 0 ) = 𝑌 ) ) |
| 31 | 24 30 | anbi12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) ) ) |
| 32 | 13 31 | rabeqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑓 ∈ ( ( Base ‘ 𝑡 ) ↑m ( Base ‘ 𝑠 ) ) ∣ ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 0g ‘ 𝑠 ) ) = ( 0g ‘ 𝑡 ) ) } = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ) |
| 33 | ovex | ⊢ ( 𝐶 ↑m 𝐵 ) ∈ V | |
| 34 | 33 | rabex | ⊢ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ∈ V |
| 35 | 32 7 34 | ovmpoa | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝑆 MndHom 𝑇 ) = { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ) |
| 36 | 35 | eleq2d | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ) ) |
| 37 | 2 | fvexi | ⊢ 𝐶 ∈ V |
| 38 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 39 | 37 38 | elmap | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 40 | 39 | anbi1i | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 41 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) ) | |
| 42 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 43 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 44 | 42 43 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 45 | 41 44 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 46 | 45 | 2ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 47 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) | |
| 48 | 47 | eqeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 0 ) = 𝑌 ↔ ( 𝐹 ‘ 0 ) = 𝑌 ) ) |
| 49 | 46 48 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 50 | 49 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 51 | 3anass | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) | |
| 52 | 40 50 51 | 3bitr4i | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∣ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑓 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ⨣ ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑌 ) } ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) |
| 53 | 36 52 | bitrdi | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 54 | 8 53 | biadanii | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |