This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in the free group is given by concatenation. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpadd.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| frgpadd.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | ||
| frgpadd.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| frgpadd.n | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | frgpadd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ∼ + [ 𝐵 ] ∼ ) = [ ( 𝐴 ++ 𝐵 ) ] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpadd.w | ⊢ 𝑊 = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 2 | frgpadd.g | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 3 | frgpadd.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 4 | frgpadd.n | ⊢ + = ( +g ‘ 𝐺 ) | |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑊 ) | |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) | |
| 7 | 1 | efgrcl | ⊢ ( 𝐴 ∈ 𝑊 → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐼 ∈ V ∧ 𝑊 = Word ( 𝐼 × 2o ) ) ) |
| 9 | 8 | simpld | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐼 ∈ V ) |
| 10 | eqid | ⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 11 | 2 10 3 | frgpval | ⊢ ( 𝐼 ∈ V → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 13 | 8 | simprd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝑊 = Word ( 𝐼 × 2o ) ) |
| 14 | 2on | ⊢ 2o ∈ On | |
| 15 | xpexg | ⊢ ( ( 𝐼 ∈ V ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 16 | 9 14 15 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐼 × 2o ) ∈ V ) |
| 17 | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) | |
| 18 | 10 17 | frmdbas | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 20 | 13 19 | eqtr4d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 21 | 1 3 | efger | ⊢ ∼ Er 𝑊 |
| 22 | 21 | a1i | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ∼ Er 𝑊 ) |
| 23 | 10 | frmdmnd | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
| 24 | 16 23 | syl | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
| 25 | eqid | ⊢ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) | |
| 26 | 2 10 3 25 | frgpcpbl | ⊢ ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) |
| 27 | 26 | a1i | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) ) |
| 28 | 24 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
| 29 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑏 ∈ 𝑊 ) | |
| 30 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑊 = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 31 | 29 30 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑏 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 32 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑑 ∈ 𝑊 ) | |
| 33 | 32 30 | eleqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → 𝑑 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 34 | 17 25 | mndcl | ⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ 𝑏 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑑 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 35 | 28 31 33 34 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 36 | 35 30 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑏 ∈ 𝑊 ∧ 𝑑 ∈ 𝑊 ) ) → ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ∈ 𝑊 ) |
| 37 | 12 20 22 24 27 36 25 4 | qusaddval | ⊢ ( ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ∼ + [ 𝐵 ] ∼ ) = [ ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) ] ∼ ) |
| 38 | 5 6 37 | mpd3an23 | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ∼ + [ 𝐵 ] ∼ ) = [ ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) ] ∼ ) |
| 39 | 5 20 | eleqtrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 40 | 6 20 | eleqtrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 41 | 10 17 25 | frmdadd | ⊢ ( ( 𝐴 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝐵 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) = ( 𝐴 ++ 𝐵 ) ) |
| 42 | 39 40 41 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) = ( 𝐴 ++ 𝐵 ) ) |
| 43 | 42 | eceq1d | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → [ ( 𝐴 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝐵 ) ] ∼ = [ ( 𝐴 ++ 𝐵 ) ] ∼ ) |
| 44 | 38 43 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ∼ + [ 𝐵 ] ∼ ) = [ ( 𝐴 ++ 𝐵 ) ] ∼ ) |