This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgp0.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| frgp0.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | ||
| Assertion | frgp0 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgp0.m | ⊢ 𝐺 = ( freeGrp ‘ 𝐼 ) | |
| 2 | frgp0.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 3 | eqid | ⊢ ( freeMnd ‘ ( 𝐼 × 2o ) ) = ( freeMnd ‘ ( 𝐼 × 2o ) ) | |
| 4 | 1 3 2 | frgpval | ⊢ ( 𝐼 ∈ 𝑉 → 𝐺 = ( ( freeMnd ‘ ( 𝐼 × 2o ) ) /s ∼ ) ) |
| 5 | 2on | ⊢ 2o ∈ On | |
| 6 | xpexg | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 2o ∈ On ) → ( 𝐼 × 2o ) ∈ V ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × 2o ) ∈ V ) |
| 8 | eqid | ⊢ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) | |
| 9 | 3 8 | frmdbas | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = Word ( 𝐼 × 2o ) ) |
| 11 | 10 | eqcomd | ⊢ ( 𝐼 ∈ 𝑉 → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 12 | eqidd | ⊢ ( 𝐼 ∈ 𝑉 → ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) | |
| 13 | eqid | ⊢ ( I ‘ Word ( 𝐼 × 2o ) ) = ( I ‘ Word ( 𝐼 × 2o ) ) | |
| 14 | 13 2 | efger | ⊢ ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) |
| 15 | wrdexg | ⊢ ( ( 𝐼 × 2o ) ∈ V → Word ( 𝐼 × 2o ) ∈ V ) | |
| 16 | fvi | ⊢ ( Word ( 𝐼 × 2o ) ∈ V → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) | |
| 17 | 7 15 16 | 3syl | ⊢ ( 𝐼 ∈ 𝑉 → ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) ) |
| 18 | ereq2 | ⊢ ( ( I ‘ Word ( 𝐼 × 2o ) ) = Word ( 𝐼 × 2o ) → ( ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ↔ ∼ Er Word ( 𝐼 × 2o ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( ∼ Er ( I ‘ Word ( 𝐼 × 2o ) ) ↔ ∼ Er Word ( 𝐼 × 2o ) ) ) |
| 20 | 14 19 | mpbii | ⊢ ( 𝐼 ∈ 𝑉 → ∼ Er Word ( 𝐼 × 2o ) ) |
| 21 | fvexd | ⊢ ( 𝐼 ∈ 𝑉 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ V ) | |
| 22 | eqid | ⊢ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) = ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) | |
| 23 | 1 3 2 22 | frgpcpbl | ⊢ ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) |
| 24 | 23 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑐 ) ∼ ( 𝑏 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑑 ) ) ) |
| 25 | 3 | frmdmnd | ⊢ ( ( 𝐼 × 2o ) ∈ V → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
| 26 | 7 25 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
| 28 | simp2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ Word ( 𝐼 × 2o ) ) | |
| 29 | 11 | 3ad2ant1 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 30 | 28 29 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 31 | simp3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑦 ∈ Word ( 𝐼 × 2o ) ) | |
| 32 | 31 29 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 33 | 8 22 | mndcl | ⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 34 | 27 30 32 33 | syl3anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 35 | 34 29 | eleqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ Word ( 𝐼 × 2o ) ) |
| 36 | 20 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ∼ Er Word ( 𝐼 × 2o ) ) |
| 37 | 26 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ) |
| 38 | 34 | 3adant3r3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 39 | simpr3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑧 ∈ Word ( 𝐼 × 2o ) ) | |
| 40 | 11 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 41 | 39 40 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑧 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 42 | 8 22 | mndcl | ⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑧 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 43 | 37 38 41 42 | syl3anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 44 | 43 40 | eleqtrrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∈ Word ( 𝐼 × 2o ) ) |
| 45 | 36 44 | erref | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∼ ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) |
| 46 | 30 | 3adant3r3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 47 | 32 | 3adant3r3 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 48 | 8 22 | mndass | ⊢ ( ( ( freeMnd ‘ ( 𝐼 × 2o ) ) ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑧 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) = ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ( 𝑦 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) ) |
| 49 | 37 46 47 41 48 | syl13anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) = ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ( 𝑦 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) ) |
| 50 | 45 49 | breqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑥 ∈ Word ( 𝐼 × 2o ) ∧ 𝑦 ∈ Word ( 𝐼 × 2o ) ∧ 𝑧 ∈ Word ( 𝐼 × 2o ) ) ) → ( ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑦 ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ∼ ( 𝑥 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ( 𝑦 ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑧 ) ) ) |
| 51 | wrd0 | ⊢ ∅ ∈ Word ( 𝐼 × 2o ) | |
| 52 | 51 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ Word ( 𝐼 × 2o ) ) |
| 53 | 51 11 | eleqtrid | ⊢ ( 𝐼 ∈ 𝑉 → ∅ ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ∅ ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 55 | 11 | eleq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ Word ( 𝐼 × 2o ) ↔ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) ) |
| 56 | 55 | biimpa | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 57 | 3 8 22 | frmdadd | ⊢ ( ( ∅ ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
| 58 | 54 56 57 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
| 59 | ccatlid | ⊢ ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( ∅ ++ 𝑥 ) = 𝑥 ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ++ 𝑥 ) = 𝑥 ) |
| 61 | 58 60 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = 𝑥 ) |
| 62 | 20 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ∼ Er Word ( 𝐼 × 2o ) ) |
| 63 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ Word ( 𝐼 × 2o ) ) | |
| 64 | 62 63 | erref | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∼ 𝑥 ) |
| 65 | 61 64 | eqbrtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ∅ ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) ∼ 𝑥 ) |
| 66 | revcl | ⊢ ( 𝑥 ∈ Word ( 𝐼 × 2o ) → ( reverse ‘ 𝑥 ) ∈ Word ( 𝐼 × 2o ) ) | |
| 67 | 66 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( reverse ‘ 𝑥 ) ∈ Word ( 𝐼 × 2o ) ) |
| 68 | eqid | ⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) = ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) | |
| 69 | 68 | efgmf | ⊢ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) |
| 70 | 69 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) |
| 71 | wrdco | ⊢ ( ( ( reverse ‘ 𝑥 ) ∈ Word ( 𝐼 × 2o ) ∧ ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) : ( 𝐼 × 2o ) ⟶ ( 𝐼 × 2o ) ) → ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ Word ( 𝐼 × 2o ) ) | |
| 72 | 67 70 71 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ Word ( 𝐼 × 2o ) ) |
| 73 | 11 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → Word ( 𝐼 × 2o ) = ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 74 | 72 73 | eleqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) |
| 75 | 3 8 22 | frmdadd | ⊢ ( ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ∧ 𝑥 ∈ ( Base ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ) |
| 76 | 74 56 75 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) = ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ) |
| 77 | 17 | eleq2d | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↔ 𝑥 ∈ Word ( 𝐼 × 2o ) ) ) |
| 78 | 77 | biimpar | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ) |
| 79 | eqid | ⊢ ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) = ( 𝑣 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) ↦ ( 𝑛 ∈ ( 0 ... ( ♯ ‘ 𝑣 ) ) , 𝑤 ∈ ( 𝐼 × 2o ) ↦ ( 𝑣 splice 〈 𝑛 , 𝑛 , 〈“ 𝑤 ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ‘ 𝑤 ) ”〉 〉 ) ) ) | |
| 80 | 13 2 68 79 | efginvrel1 | ⊢ ( 𝑥 ∈ ( I ‘ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ∼ ∅ ) |
| 81 | 78 80 | syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ++ 𝑥 ) ∼ ∅ ) |
| 82 | 76 81 | eqbrtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word ( 𝐼 × 2o ) ) → ( ( ( 𝑦 ∈ 𝐼 , 𝑧 ∈ 2o ↦ 〈 𝑦 , ( 1o ∖ 𝑧 ) 〉 ) ∘ ( reverse ‘ 𝑥 ) ) ( +g ‘ ( freeMnd ‘ ( 𝐼 × 2o ) ) ) 𝑥 ) ∼ ∅ ) |
| 83 | 4 11 12 20 21 24 35 50 52 65 72 82 | qusgrp2 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐺 ∈ Grp ∧ [ ∅ ] ∼ = ( 0g ‘ 𝐺 ) ) ) |