This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| Assertion | frmd0 | ⊢ ∅ = ( 0g ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | ⊢ 𝑀 = ( freeMnd ‘ 𝐼 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 5 | wrd0 | ⊢ ∅ ∈ Word 𝐼 | |
| 6 | 1 2 | frmdbas | ⊢ ( 𝐼 ∈ V → ( Base ‘ 𝑀 ) = Word 𝐼 ) |
| 7 | 5 6 | eleqtrrid | ⊢ ( 𝐼 ∈ V → ∅ ∈ ( Base ‘ 𝑀 ) ) |
| 8 | 1 2 4 | frmdadd | ⊢ ( ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐼 ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = ( ∅ ++ 𝑥 ) ) |
| 10 | 1 2 | frmdelbas | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑀 ) → 𝑥 ∈ Word 𝐼 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐼 ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → 𝑥 ∈ Word 𝐼 ) |
| 12 | ccatlid | ⊢ ( 𝑥 ∈ Word 𝐼 → ( ∅ ++ 𝑥 ) = 𝑥 ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐼 ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ++ 𝑥 ) = 𝑥 ) |
| 14 | 9 13 | eqtrd | ⊢ ( ( 𝐼 ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ∅ ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 15 | 1 2 4 | frmdadd | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ ∅ ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
| 16 | 15 | ancoms | ⊢ ( ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
| 17 | 7 16 | sylan | ⊢ ( ( 𝐼 ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑥 ++ ∅ ) ) |
| 18 | ccatrid | ⊢ ( 𝑥 ∈ Word 𝐼 → ( 𝑥 ++ ∅ ) = 𝑥 ) | |
| 19 | 11 18 | syl | ⊢ ( ( 𝐼 ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ++ ∅ ) = 𝑥 ) |
| 20 | 17 19 | eqtrd | ⊢ ( ( 𝐼 ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) ∅ ) = 𝑥 ) |
| 21 | 2 3 4 7 14 20 | ismgmid2 | ⊢ ( 𝐼 ∈ V → ∅ = ( 0g ‘ 𝑀 ) ) |
| 22 | 0g0 | ⊢ ∅ = ( 0g ‘ ∅ ) | |
| 23 | fvprc | ⊢ ( ¬ 𝐼 ∈ V → ( freeMnd ‘ 𝐼 ) = ∅ ) | |
| 24 | 1 23 | eqtrid | ⊢ ( ¬ 𝐼 ∈ V → 𝑀 = ∅ ) |
| 25 | 24 | fveq2d | ⊢ ( ¬ 𝐼 ∈ V → ( 0g ‘ 𝑀 ) = ( 0g ‘ ∅ ) ) |
| 26 | 22 25 | eqtr4id | ⊢ ( ¬ 𝐼 ∈ V → ∅ = ( 0g ‘ 𝑀 ) ) |
| 27 | 21 26 | pm2.61i | ⊢ ∅ = ( 0g ‘ 𝑀 ) |