This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical injection from the generating set I to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vrgpfval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| vrgpfval.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | ||
| Assertion | vrgpfval | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 = ( 𝑗 ∈ 𝐼 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | ⊢ ∼ = ( ~FG ‘ 𝐼 ) | |
| 2 | vrgpfval.u | ⊢ 𝑈 = ( varFGrp ‘ 𝐼 ) | |
| 3 | elex | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ V ) | |
| 4 | id | ⊢ ( 𝑖 = 𝐼 → 𝑖 = 𝐼 ) | |
| 5 | fveq2 | ⊢ ( 𝑖 = 𝐼 → ( ~FG ‘ 𝑖 ) = ( ~FG ‘ 𝐼 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑖 = 𝐼 → ( ~FG ‘ 𝑖 ) = ∼ ) |
| 7 | 6 | eceq2d | ⊢ ( 𝑖 = 𝐼 → [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ( ~FG ‘ 𝑖 ) = [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ) |
| 8 | 4 7 | mpteq12dv | ⊢ ( 𝑖 = 𝐼 → ( 𝑗 ∈ 𝑖 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ( ~FG ‘ 𝑖 ) ) = ( 𝑗 ∈ 𝐼 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ) ) |
| 9 | df-vrgp | ⊢ varFGrp = ( 𝑖 ∈ V ↦ ( 𝑗 ∈ 𝑖 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ( ~FG ‘ 𝑖 ) ) ) | |
| 10 | vex | ⊢ 𝑖 ∈ V | |
| 11 | 10 | mptex | ⊢ ( 𝑗 ∈ 𝑖 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ( ~FG ‘ 𝑖 ) ) ∈ V |
| 12 | 8 9 11 | fvmpt3i | ⊢ ( 𝐼 ∈ V → ( varFGrp ‘ 𝐼 ) = ( 𝑗 ∈ 𝐼 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ) ) |
| 13 | 3 12 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( varFGrp ‘ 𝐼 ) = ( 𝑗 ∈ 𝐼 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ) ) |
| 14 | 2 13 | eqtrid | ⊢ ( 𝐼 ∈ 𝑉 → 𝑈 = ( 𝑗 ∈ 𝐼 ↦ [ 〈“ 〈 𝑗 , ∅ 〉 ”〉 ] ∼ ) ) |