This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange order of multiplication. Note that B ( j ) and D ( k ) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018) (Proof shortened by JJ, 2-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcom2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodcom2.2 | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | ||
| fprodcom2.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| fprodcom2.4 | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) | ||
| fprodcom2.5 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐸 ∈ ℂ ) | ||
| Assertion | fprodcom2 | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑘 ∈ 𝐶 ∏ 𝑗 ∈ 𝐷 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcom2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodcom2.2 | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) | |
| 3 | fprodcom2.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 4 | fprodcom2.4 | ⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) | |
| 5 | fprodcom2.5 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐸 ∈ ℂ ) | |
| 6 | relxp | ⊢ Rel ( { 𝑗 } × 𝐵 ) | |
| 7 | 6 | rgenw | ⊢ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐵 ) |
| 8 | reliun | ⊢ ( Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐵 ) ) | |
| 9 | 7 8 | mpbir | ⊢ Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 10 | relcnv | ⊢ Rel ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) | |
| 11 | ancom | ⊢ ( ( 𝑥 = 𝑗 ∧ 𝑦 = 𝑘 ) ↔ ( 𝑦 = 𝑘 ∧ 𝑥 = 𝑗 ) ) | |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | vex | ⊢ 𝑦 ∈ V | |
| 14 | 12 13 | opth | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ ( 𝑥 = 𝑗 ∧ 𝑦 = 𝑘 ) ) |
| 15 | 13 12 | opth | ⊢ ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ↔ ( 𝑦 = 𝑘 ∧ 𝑥 = 𝑗 ) ) |
| 16 | 11 14 15 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ) |
| 17 | 16 | a1i | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ) ) |
| 18 | 17 4 | anbi12d | ⊢ ( 𝜑 → ( ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) ) |
| 19 | 18 | 2exbidv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) ) |
| 20 | eliunxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) | |
| 21 | 12 13 | opelcnv | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
| 22 | eliunxp | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑘 ∃ 𝑗 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) | |
| 23 | excom | ⊢ ( ∃ 𝑘 ∃ 𝑗 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) | |
| 24 | 21 22 23 | 3bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
| 25 | 19 20 24 | 3bitr4g | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) ) |
| 26 | 9 10 25 | eqrelrdv | ⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
| 27 | nfcv | ⊢ Ⅎ 𝑥 ( { 𝑗 } × 𝐵 ) | |
| 28 | nfcv | ⊢ Ⅎ 𝑗 { 𝑥 } | |
| 29 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐵 | |
| 30 | 28 29 | nfxp | ⊢ Ⅎ 𝑗 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
| 31 | sneq | ⊢ ( 𝑗 = 𝑥 → { 𝑗 } = { 𝑥 } ) | |
| 32 | csbeq1a | ⊢ ( 𝑗 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) | |
| 33 | 31 32 | xpeq12d | ⊢ ( 𝑗 = 𝑥 → ( { 𝑗 } × 𝐵 ) = ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) |
| 34 | 27 30 33 | cbviun | ⊢ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
| 35 | nfcv | ⊢ Ⅎ 𝑦 ( { 𝑘 } × 𝐷 ) | |
| 36 | nfcv | ⊢ Ⅎ 𝑘 { 𝑦 } | |
| 37 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐷 | |
| 38 | 36 37 | nfxp | ⊢ Ⅎ 𝑘 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
| 39 | sneq | ⊢ ( 𝑘 = 𝑦 → { 𝑘 } = { 𝑦 } ) | |
| 40 | csbeq1a | ⊢ ( 𝑘 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) | |
| 41 | 39 40 | xpeq12d | ⊢ ( 𝑘 = 𝑦 → ( { 𝑘 } × 𝐷 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
| 42 | 35 38 41 | cbviun | ⊢ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) = ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
| 43 | 42 | cnveqi | ⊢ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) = ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
| 44 | 26 34 43 | 3eqtr3g | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) = ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
| 45 | 44 | prodeq1d | ⊢ ( 𝜑 → ∏ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ∏ 𝑧 ∈ ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
| 46 | 13 12 | op1std | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 1st ‘ 𝑤 ) = 𝑦 ) |
| 47 | 46 | csbeq1d | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
| 48 | 13 12 | op2ndd | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 2nd ‘ 𝑤 ) = 𝑥 ) |
| 49 | 48 | csbeq1d | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 50 | 49 | csbeq2dv | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 51 | 47 50 | eqtrd | ⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 52 | 12 13 | op2ndd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 53 | 52 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
| 54 | 12 13 | op1std | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 55 | 54 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 56 | 55 | csbeq2dv | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 57 | 53 56 | eqtrd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 58 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 59 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ Fin ) |
| 60 | 37 40 | opeliunxp2f | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
| 61 | 21 60 | sylbbr | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
| 62 | 61 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
| 63 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
| 64 | 62 63 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 65 | eliun | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) | |
| 66 | 64 65 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 67 | simpr | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) | |
| 68 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ↔ ( 𝑥 ∈ { 𝑗 } ∧ 𝑦 ∈ 𝐵 ) ) | |
| 69 | 67 68 | sylib | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 𝑥 ∈ { 𝑗 } ∧ 𝑦 ∈ 𝐵 ) ) |
| 70 | 69 | simpld | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑥 ∈ { 𝑗 } ) |
| 71 | elsni | ⊢ ( 𝑥 ∈ { 𝑗 } → 𝑥 = 𝑗 ) | |
| 72 | 70 71 | syl | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑥 = 𝑗 ) |
| 73 | simpl | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑗 ∈ 𝐴 ) | |
| 74 | 72 73 | eqeltrd | ⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
| 75 | 74 | rexlimiva | ⊢ ( ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 76 | 66 75 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑥 ∈ 𝐴 ) |
| 77 | 76 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 → 𝑥 ∈ 𝐴 ) ) |
| 78 | 77 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⊆ 𝐴 ) |
| 79 | 59 78 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ∈ Fin ) |
| 80 | xpfi | ⊢ ( ( { 𝑦 } ∈ Fin ∧ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ∈ Fin ) → ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) | |
| 81 | 58 79 80 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
| 82 | 81 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
| 83 | iunfi | ⊢ ( ( 𝐶 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) → ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) | |
| 84 | 2 82 83 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
| 85 | reliun | ⊢ ( Rel ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ↔ ∀ 𝑦 ∈ 𝐶 Rel ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) | |
| 86 | relxp | ⊢ Rel ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) | |
| 87 | 86 | a1i | ⊢ ( 𝑦 ∈ 𝐶 → Rel ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
| 88 | 85 87 | mprgbir | ⊢ Rel ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
| 89 | 88 | a1i | ⊢ ( 𝜑 → Rel ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
| 90 | csbeq1 | ⊢ ( 𝑥 = ( 2nd ‘ 𝑤 ) → ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) | |
| 91 | 90 | csbeq2dv | ⊢ ( 𝑥 = ( 2nd ‘ 𝑤 ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
| 92 | 91 | eleq1d | ⊢ ( 𝑥 = ( 2nd ‘ 𝑤 ) → ( ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 93 | csbeq1 | ⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐷 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) | |
| 94 | csbeq1 | ⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) | |
| 95 | 94 | eleq1d | ⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ( ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 96 | 93 95 | raleqbidv | ⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ( ∀ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ∀ 𝑥 ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 97 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝜑 ) | |
| 98 | 29 | nfcri | ⊢ Ⅎ 𝑗 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 |
| 99 | 71 | equcomd | ⊢ ( 𝑥 ∈ { 𝑗 } → 𝑗 = 𝑥 ) |
| 100 | 99 32 | syl | ⊢ ( 𝑥 ∈ { 𝑗 } → 𝐵 = ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
| 101 | 100 | eleq2d | ⊢ ( 𝑥 ∈ { 𝑗 } → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) |
| 102 | 101 | biimpa | ⊢ ( ( 𝑥 ∈ { 𝑗 } ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
| 103 | 68 102 | sylbi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
| 104 | 103 | a1i | ⊢ ( 𝑗 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) |
| 105 | 98 104 | rexlimi | ⊢ ( ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
| 106 | 66 105 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
| 107 | 5 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ ) |
| 108 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 | |
| 109 | 108 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ |
| 110 | 29 109 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ |
| 111 | csbeq1a | ⊢ ( 𝑗 = 𝑥 → 𝐸 = ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) | |
| 112 | 111 | eleq1d | ⊢ ( 𝑗 = 𝑥 → ( 𝐸 ∈ ℂ ↔ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 113 | 32 112 | raleqbidv | ⊢ ( 𝑗 = 𝑥 → ( ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ ↔ ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 114 | 110 113 | rspc | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ → ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 115 | 107 114 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
| 116 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 | |
| 117 | 116 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ |
| 118 | csbeq1a | ⊢ ( 𝑘 = 𝑦 → ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) | |
| 119 | 118 | eleq1d | ⊢ ( 𝑘 = 𝑦 → ( ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 120 | 117 119 | rspc | ⊢ ( 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 → ( ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 121 | 115 120 | syl5com | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
| 122 | 121 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
| 123 | 97 76 106 122 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
| 124 | 123 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
| 125 | 124 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
| 126 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) | |
| 127 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ↔ ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) | |
| 128 | 126 127 | sylib | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
| 129 | xp1st | ⊢ ( 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 1st ‘ 𝑤 ) ∈ { 𝑦 } ) | |
| 130 | 129 | adantl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ { 𝑦 } ) |
| 131 | elsni | ⊢ ( ( 1st ‘ 𝑤 ) ∈ { 𝑦 } → ( 1st ‘ 𝑤 ) = 𝑦 ) | |
| 132 | 130 131 | syl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) = 𝑦 ) |
| 133 | simpl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑦 ∈ 𝐶 ) | |
| 134 | 132 133 | eqeltrd | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
| 135 | 134 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
| 136 | 128 135 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
| 137 | 96 125 136 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∀ 𝑥 ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
| 138 | xp2nd | ⊢ ( 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) | |
| 139 | 138 | adantl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
| 140 | 132 | csbeq1d | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 = ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
| 141 | 139 140 | eleqtrrd | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
| 142 | 141 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
| 143 | 128 142 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
| 144 | 92 137 143 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
| 145 | 51 57 84 89 144 | fprodcnv | ⊢ ( 𝜑 → ∏ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ∏ 𝑧 ∈ ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
| 146 | 45 145 | eqtr4d | ⊢ ( 𝜑 → ∏ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ∏ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
| 147 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin ) |
| 148 | 29 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin |
| 149 | 32 | eleq1d | ⊢ ( 𝑗 = 𝑥 → ( 𝐵 ∈ Fin ↔ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
| 150 | 148 149 | rspc | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
| 151 | 147 150 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin ) |
| 152 | 57 1 151 122 | fprod2d | ⊢ ( 𝜑 → ∏ 𝑥 ∈ 𝐴 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
| 153 | 51 2 79 123 | fprod2d | ⊢ ( 𝜑 → ∏ 𝑦 ∈ 𝐶 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
| 154 | 146 152 153 | 3eqtr4d | ⊢ ( 𝜑 → ∏ 𝑥 ∈ 𝐴 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑦 ∈ 𝐶 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 155 | nfcv | ⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐸 | |
| 156 | nfcv | ⊢ Ⅎ 𝑗 𝑦 | |
| 157 | 156 108 | nfcsbw | ⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
| 158 | 29 157 | nfcprod | ⊢ Ⅎ 𝑗 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
| 159 | nfcv | ⊢ Ⅎ 𝑦 𝐸 | |
| 160 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐸 | |
| 161 | csbeq1a | ⊢ ( 𝑘 = 𝑦 → 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ 𝐸 ) | |
| 162 | 159 160 161 | cbvprodi | ⊢ ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐸 |
| 163 | 111 | csbeq2dv | ⊢ ( 𝑗 = 𝑥 → ⦋ 𝑦 / 𝑘 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 164 | 163 | adantr | ⊢ ( ( 𝑗 = 𝑥 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 165 | 32 164 | prodeq12dv | ⊢ ( 𝑗 = 𝑥 → ∏ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐸 = ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 166 | 162 165 | eqtrid | ⊢ ( 𝑗 = 𝑥 → ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 167 | 155 158 166 | cbvprodi | ⊢ ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑥 ∈ 𝐴 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
| 168 | nfcv | ⊢ Ⅎ 𝑦 ∏ 𝑗 ∈ 𝐷 𝐸 | |
| 169 | 37 116 | nfcprod | ⊢ Ⅎ 𝑘 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
| 170 | nfcv | ⊢ Ⅎ 𝑥 𝐸 | |
| 171 | 170 108 111 | cbvprodi | ⊢ ∏ 𝑗 ∈ 𝐷 𝐸 = ∏ 𝑥 ∈ 𝐷 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
| 172 | 118 | adantr | ⊢ ( ( 𝑘 = 𝑦 ∧ 𝑥 ∈ 𝐷 ) → ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 173 | 40 172 | prodeq12dv | ⊢ ( 𝑘 = 𝑦 → ∏ 𝑥 ∈ 𝐷 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 174 | 171 173 | eqtrid | ⊢ ( 𝑘 = 𝑦 → ∏ 𝑗 ∈ 𝐷 𝐸 = ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
| 175 | 168 169 174 | cbvprodi | ⊢ ∏ 𝑘 ∈ 𝐶 ∏ 𝑗 ∈ 𝐷 𝐸 = ∏ 𝑦 ∈ 𝐶 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
| 176 | 154 167 175 | 3eqtr4g | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑘 ∈ 𝐶 ∏ 𝑗 ∈ 𝐷 𝐸 ) |