This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for E instead of distinct variable conditions as in opeliunxp2 . (Contributed by AV, 25-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opeliunxp2f.f | ⊢ Ⅎ 𝑥 𝐸 | |
| opeliunxp2f.e | ⊢ ( 𝑥 = 𝐶 → 𝐵 = 𝐸 ) | ||
| Assertion | opeliunxp2f | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeliunxp2f.f | ⊢ Ⅎ 𝑥 𝐸 | |
| 2 | opeliunxp2f.e | ⊢ ( 𝑥 = 𝐶 → 𝐵 = 𝐸 ) | |
| 3 | df-br | ⊢ ( 𝐶 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) 𝐷 ↔ 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) | |
| 4 | relxp | ⊢ Rel ( { 𝑥 } × 𝐵 ) | |
| 5 | 4 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 Rel ( { 𝑥 } × 𝐵 ) |
| 6 | reliun | ⊢ ( Rel ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 Rel ( { 𝑥 } × 𝐵 ) ) | |
| 7 | 5 6 | mpbir | ⊢ Rel ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| 8 | 7 | brrelex1i | ⊢ ( 𝐶 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) 𝐷 → 𝐶 ∈ V ) |
| 9 | 3 8 | sylbir | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) → 𝐶 ∈ V ) |
| 10 | elex | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) → 𝐶 ∈ V ) |
| 12 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) | |
| 13 | 12 | nfel2 | ⊢ Ⅎ 𝑥 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| 14 | nfv | ⊢ Ⅎ 𝑥 𝐶 ∈ 𝐴 | |
| 15 | 1 | nfel2 | ⊢ Ⅎ 𝑥 𝐷 ∈ 𝐸 |
| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑥 ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) |
| 17 | 13 16 | nfbi | ⊢ Ⅎ 𝑥 ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) |
| 18 | opeq1 | ⊢ ( 𝑥 = 𝐶 → 〈 𝑥 , 𝐷 〉 = 〈 𝐶 , 𝐷 〉 ) | |
| 19 | 18 | eleq1d | ⊢ ( 𝑥 = 𝐶 → ( 〈 𝑥 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
| 20 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 21 | 2 | eleq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸 ) ) |
| 22 | 20 21 | anbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) ) |
| 23 | 19 22 | bibi12d | ⊢ ( 𝑥 = 𝐶 → ( ( 〈 𝑥 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) ↔ ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) ) ) |
| 24 | opeliunxp | ⊢ ( 〈 𝑥 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) | |
| 25 | 17 23 24 | vtoclg1f | ⊢ ( 𝐶 ∈ V → ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) ) |
| 26 | 9 11 25 | pm5.21nii | ⊢ ( 〈 𝐶 , 𝐷 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸 ) ) |