This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interchange order of multiplication. Note that B ( j ) and D ( k ) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018) (Proof shortened by JJ, 2-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcom2.1 | |- ( ph -> A e. Fin ) |
|
| fprodcom2.2 | |- ( ph -> C e. Fin ) |
||
| fprodcom2.3 | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
||
| fprodcom2.4 | |- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. C /\ j e. D ) ) ) |
||
| fprodcom2.5 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> E e. CC ) |
||
| Assertion | fprodcom2 | |- ( ph -> prod_ j e. A prod_ k e. B E = prod_ k e. C prod_ j e. D E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcom2.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fprodcom2.2 | |- ( ph -> C e. Fin ) |
|
| 3 | fprodcom2.3 | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
|
| 4 | fprodcom2.4 | |- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. C /\ j e. D ) ) ) |
|
| 5 | fprodcom2.5 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> E e. CC ) |
|
| 6 | relxp | |- Rel ( { j } X. B ) |
|
| 7 | 6 | rgenw | |- A. j e. A Rel ( { j } X. B ) |
| 8 | reliun | |- ( Rel U_ j e. A ( { j } X. B ) <-> A. j e. A Rel ( { j } X. B ) ) |
|
| 9 | 7 8 | mpbir | |- Rel U_ j e. A ( { j } X. B ) |
| 10 | relcnv | |- Rel `' U_ k e. C ( { k } X. D ) |
|
| 11 | ancom | |- ( ( x = j /\ y = k ) <-> ( y = k /\ x = j ) ) |
|
| 12 | vex | |- x e. _V |
|
| 13 | vex | |- y e. _V |
|
| 14 | 12 13 | opth | |- ( <. x , y >. = <. j , k >. <-> ( x = j /\ y = k ) ) |
| 15 | 13 12 | opth | |- ( <. y , x >. = <. k , j >. <-> ( y = k /\ x = j ) ) |
| 16 | 11 14 15 | 3bitr4i | |- ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) |
| 17 | 16 | a1i | |- ( ph -> ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) ) |
| 18 | 17 4 | anbi12d | |- ( ph -> ( ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
| 19 | 18 | 2exbidv | |- ( ph -> ( E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
| 20 | eliunxp | |- ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) ) |
|
| 21 | 12 13 | opelcnv | |- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> <. y , x >. e. U_ k e. C ( { k } X. D ) ) |
| 22 | eliunxp | |- ( <. y , x >. e. U_ k e. C ( { k } X. D ) <-> E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
|
| 23 | excom | |- ( E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
|
| 24 | 21 22 23 | 3bitri | |- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
| 25 | 19 20 24 | 3bitr4g | |- ( ph -> ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) ) |
| 26 | 9 10 25 | eqrelrdv | |- ( ph -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
| 27 | nfcv | |- F/_ x ( { j } X. B ) |
|
| 28 | nfcv | |- F/_ j { x } |
|
| 29 | nfcsb1v | |- F/_ j [_ x / j ]_ B |
|
| 30 | 28 29 | nfxp | |- F/_ j ( { x } X. [_ x / j ]_ B ) |
| 31 | sneq | |- ( j = x -> { j } = { x } ) |
|
| 32 | csbeq1a | |- ( j = x -> B = [_ x / j ]_ B ) |
|
| 33 | 31 32 | xpeq12d | |- ( j = x -> ( { j } X. B ) = ( { x } X. [_ x / j ]_ B ) ) |
| 34 | 27 30 33 | cbviun | |- U_ j e. A ( { j } X. B ) = U_ x e. A ( { x } X. [_ x / j ]_ B ) |
| 35 | nfcv | |- F/_ y ( { k } X. D ) |
|
| 36 | nfcv | |- F/_ k { y } |
|
| 37 | nfcsb1v | |- F/_ k [_ y / k ]_ D |
|
| 38 | 36 37 | nfxp | |- F/_ k ( { y } X. [_ y / k ]_ D ) |
| 39 | sneq | |- ( k = y -> { k } = { y } ) |
|
| 40 | csbeq1a | |- ( k = y -> D = [_ y / k ]_ D ) |
|
| 41 | 39 40 | xpeq12d | |- ( k = y -> ( { k } X. D ) = ( { y } X. [_ y / k ]_ D ) ) |
| 42 | 35 38 41 | cbviun | |- U_ k e. C ( { k } X. D ) = U_ y e. C ( { y } X. [_ y / k ]_ D ) |
| 43 | 42 | cnveqi | |- `' U_ k e. C ( { k } X. D ) = `' U_ y e. C ( { y } X. [_ y / k ]_ D ) |
| 44 | 26 34 43 | 3eqtr3g | |- ( ph -> U_ x e. A ( { x } X. [_ x / j ]_ B ) = `' U_ y e. C ( { y } X. [_ y / k ]_ D ) ) |
| 45 | 44 | prodeq1d | |- ( ph -> prod_ z e. U_ x e. A ( { x } X. [_ x / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = prod_ z e. `' U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 46 | 13 12 | op1std | |- ( w = <. y , x >. -> ( 1st ` w ) = y ) |
| 47 | 46 | csbeq1d | |- ( w = <. y , x >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ y / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 48 | 13 12 | op2ndd | |- ( w = <. y , x >. -> ( 2nd ` w ) = x ) |
| 49 | 48 | csbeq1d | |- ( w = <. y , x >. -> [_ ( 2nd ` w ) / j ]_ E = [_ x / j ]_ E ) |
| 50 | 49 | csbeq2dv | |- ( w = <. y , x >. -> [_ y / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
| 51 | 47 50 | eqtrd | |- ( w = <. y , x >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
| 52 | 12 13 | op2ndd | |- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
| 53 | 52 | csbeq1d | |- ( z = <. x , y >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ y / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 54 | 12 13 | op1std | |- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 55 | 54 | csbeq1d | |- ( z = <. x , y >. -> [_ ( 1st ` z ) / j ]_ E = [_ x / j ]_ E ) |
| 56 | 55 | csbeq2dv | |- ( z = <. x , y >. -> [_ y / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
| 57 | 53 56 | eqtrd | |- ( z = <. x , y >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
| 58 | snfi | |- { y } e. Fin |
|
| 59 | 1 | adantr | |- ( ( ph /\ y e. C ) -> A e. Fin ) |
| 60 | 37 40 | opeliunxp2f | |- ( <. y , x >. e. U_ k e. C ( { k } X. D ) <-> ( y e. C /\ x e. [_ y / k ]_ D ) ) |
| 61 | 21 60 | sylbbr | |- ( ( y e. C /\ x e. [_ y / k ]_ D ) -> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) |
| 62 | 61 | adantl | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) |
| 63 | 26 | adantr | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
| 64 | 62 63 | eleqtrrd | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> <. x , y >. e. U_ j e. A ( { j } X. B ) ) |
| 65 | eliun | |- ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> E. j e. A <. x , y >. e. ( { j } X. B ) ) |
|
| 66 | 64 65 | sylib | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> E. j e. A <. x , y >. e. ( { j } X. B ) ) |
| 67 | simpr | |- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> <. x , y >. e. ( { j } X. B ) ) |
|
| 68 | opelxp | |- ( <. x , y >. e. ( { j } X. B ) <-> ( x e. { j } /\ y e. B ) ) |
|
| 69 | 67 68 | sylib | |- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> ( x e. { j } /\ y e. B ) ) |
| 70 | 69 | simpld | |- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> x e. { j } ) |
| 71 | elsni | |- ( x e. { j } -> x = j ) |
|
| 72 | 70 71 | syl | |- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> x = j ) |
| 73 | simpl | |- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> j e. A ) |
|
| 74 | 72 73 | eqeltrd | |- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> x e. A ) |
| 75 | 74 | rexlimiva | |- ( E. j e. A <. x , y >. e. ( { j } X. B ) -> x e. A ) |
| 76 | 66 75 | syl | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> x e. A ) |
| 77 | 76 | expr | |- ( ( ph /\ y e. C ) -> ( x e. [_ y / k ]_ D -> x e. A ) ) |
| 78 | 77 | ssrdv | |- ( ( ph /\ y e. C ) -> [_ y / k ]_ D C_ A ) |
| 79 | 59 78 | ssfid | |- ( ( ph /\ y e. C ) -> [_ y / k ]_ D e. Fin ) |
| 80 | xpfi | |- ( ( { y } e. Fin /\ [_ y / k ]_ D e. Fin ) -> ( { y } X. [_ y / k ]_ D ) e. Fin ) |
|
| 81 | 58 79 80 | sylancr | |- ( ( ph /\ y e. C ) -> ( { y } X. [_ y / k ]_ D ) e. Fin ) |
| 82 | 81 | ralrimiva | |- ( ph -> A. y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) |
| 83 | iunfi | |- ( ( C e. Fin /\ A. y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) -> U_ y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) |
|
| 84 | 2 82 83 | syl2anc | |- ( ph -> U_ y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) |
| 85 | reliun | |- ( Rel U_ y e. C ( { y } X. [_ y / k ]_ D ) <-> A. y e. C Rel ( { y } X. [_ y / k ]_ D ) ) |
|
| 86 | relxp | |- Rel ( { y } X. [_ y / k ]_ D ) |
|
| 87 | 86 | a1i | |- ( y e. C -> Rel ( { y } X. [_ y / k ]_ D ) ) |
| 88 | 85 87 | mprgbir | |- Rel U_ y e. C ( { y } X. [_ y / k ]_ D ) |
| 89 | 88 | a1i | |- ( ph -> Rel U_ y e. C ( { y } X. [_ y / k ]_ D ) ) |
| 90 | csbeq1 | |- ( x = ( 2nd ` w ) -> [_ x / j ]_ E = [_ ( 2nd ` w ) / j ]_ E ) |
|
| 91 | 90 | csbeq2dv | |- ( x = ( 2nd ` w ) -> [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 92 | 91 | eleq1d | |- ( x = ( 2nd ` w ) -> ( [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) ) |
| 93 | csbeq1 | |- ( y = ( 1st ` w ) -> [_ y / k ]_ D = [_ ( 1st ` w ) / k ]_ D ) |
|
| 94 | csbeq1 | |- ( y = ( 1st ` w ) -> [_ y / k ]_ [_ x / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E ) |
|
| 95 | 94 | eleq1d | |- ( y = ( 1st ` w ) -> ( [_ y / k ]_ [_ x / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC ) ) |
| 96 | 93 95 | raleqbidv | |- ( y = ( 1st ` w ) -> ( A. x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E e. CC <-> A. x e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC ) ) |
| 97 | simpl | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> ph ) |
|
| 98 | 29 | nfcri | |- F/ j y e. [_ x / j ]_ B |
| 99 | 71 | equcomd | |- ( x e. { j } -> j = x ) |
| 100 | 99 32 | syl | |- ( x e. { j } -> B = [_ x / j ]_ B ) |
| 101 | 100 | eleq2d | |- ( x e. { j } -> ( y e. B <-> y e. [_ x / j ]_ B ) ) |
| 102 | 101 | biimpa | |- ( ( x e. { j } /\ y e. B ) -> y e. [_ x / j ]_ B ) |
| 103 | 68 102 | sylbi | |- ( <. x , y >. e. ( { j } X. B ) -> y e. [_ x / j ]_ B ) |
| 104 | 103 | a1i | |- ( j e. A -> ( <. x , y >. e. ( { j } X. B ) -> y e. [_ x / j ]_ B ) ) |
| 105 | 98 104 | rexlimi | |- ( E. j e. A <. x , y >. e. ( { j } X. B ) -> y e. [_ x / j ]_ B ) |
| 106 | 66 105 | syl | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> y e. [_ x / j ]_ B ) |
| 107 | 5 | ralrimivva | |- ( ph -> A. j e. A A. k e. B E e. CC ) |
| 108 | nfcsb1v | |- F/_ j [_ x / j ]_ E |
|
| 109 | 108 | nfel1 | |- F/ j [_ x / j ]_ E e. CC |
| 110 | 29 109 | nfralw | |- F/ j A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC |
| 111 | csbeq1a | |- ( j = x -> E = [_ x / j ]_ E ) |
|
| 112 | 111 | eleq1d | |- ( j = x -> ( E e. CC <-> [_ x / j ]_ E e. CC ) ) |
| 113 | 32 112 | raleqbidv | |- ( j = x -> ( A. k e. B E e. CC <-> A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC ) ) |
| 114 | 110 113 | rspc | |- ( x e. A -> ( A. j e. A A. k e. B E e. CC -> A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC ) ) |
| 115 | 107 114 | mpan9 | |- ( ( ph /\ x e. A ) -> A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC ) |
| 116 | nfcsb1v | |- F/_ k [_ y / k ]_ [_ x / j ]_ E |
|
| 117 | 116 | nfel1 | |- F/ k [_ y / k ]_ [_ x / j ]_ E e. CC |
| 118 | csbeq1a | |- ( k = y -> [_ x / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
|
| 119 | 118 | eleq1d | |- ( k = y -> ( [_ x / j ]_ E e. CC <-> [_ y / k ]_ [_ x / j ]_ E e. CC ) ) |
| 120 | 117 119 | rspc | |- ( y e. [_ x / j ]_ B -> ( A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC -> [_ y / k ]_ [_ x / j ]_ E e. CC ) ) |
| 121 | 115 120 | syl5com | |- ( ( ph /\ x e. A ) -> ( y e. [_ x / j ]_ B -> [_ y / k ]_ [_ x / j ]_ E e. CC ) ) |
| 122 | 121 | impr | |- ( ( ph /\ ( x e. A /\ y e. [_ x / j ]_ B ) ) -> [_ y / k ]_ [_ x / j ]_ E e. CC ) |
| 123 | 97 76 106 122 | syl12anc | |- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> [_ y / k ]_ [_ x / j ]_ E e. CC ) |
| 124 | 123 | ralrimivva | |- ( ph -> A. y e. C A. x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E e. CC ) |
| 125 | 124 | adantr | |- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> A. y e. C A. x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E e. CC ) |
| 126 | simpr | |- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) |
|
| 127 | eliun | |- ( w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) <-> E. y e. C w e. ( { y } X. [_ y / k ]_ D ) ) |
|
| 128 | 126 127 | sylib | |- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> E. y e. C w e. ( { y } X. [_ y / k ]_ D ) ) |
| 129 | xp1st | |- ( w e. ( { y } X. [_ y / k ]_ D ) -> ( 1st ` w ) e. { y } ) |
|
| 130 | 129 | adantl | |- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) e. { y } ) |
| 131 | elsni | |- ( ( 1st ` w ) e. { y } -> ( 1st ` w ) = y ) |
|
| 132 | 130 131 | syl | |- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) = y ) |
| 133 | simpl | |- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> y e. C ) |
|
| 134 | 132 133 | eqeltrd | |- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
| 135 | 134 | rexlimiva | |- ( E. y e. C w e. ( { y } X. [_ y / k ]_ D ) -> ( 1st ` w ) e. C ) |
| 136 | 128 135 | syl | |- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
| 137 | 96 125 136 | rspcdva | |- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> A. x e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC ) |
| 138 | xp2nd | |- ( w e. ( { y } X. [_ y / k ]_ D ) -> ( 2nd ` w ) e. [_ y / k ]_ D ) |
|
| 139 | 138 | adantl | |- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 2nd ` w ) e. [_ y / k ]_ D ) |
| 140 | 132 | csbeq1d | |- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ D = [_ y / k ]_ D ) |
| 141 | 139 140 | eleqtrrd | |- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
| 142 | 141 | rexlimiva | |- ( E. y e. C w e. ( { y } X. [_ y / k ]_ D ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
| 143 | 128 142 | syl | |- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
| 144 | 92 137 143 | rspcdva | |- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) |
| 145 | 51 57 84 89 144 | fprodcnv | |- ( ph -> prod_ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = prod_ z e. `' U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 146 | 45 145 | eqtr4d | |- ( ph -> prod_ z e. U_ x e. A ( { x } X. [_ x / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = prod_ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 147 | 3 | ralrimiva | |- ( ph -> A. j e. A B e. Fin ) |
| 148 | 29 | nfel1 | |- F/ j [_ x / j ]_ B e. Fin |
| 149 | 32 | eleq1d | |- ( j = x -> ( B e. Fin <-> [_ x / j ]_ B e. Fin ) ) |
| 150 | 148 149 | rspc | |- ( x e. A -> ( A. j e. A B e. Fin -> [_ x / j ]_ B e. Fin ) ) |
| 151 | 147 150 | mpan9 | |- ( ( ph /\ x e. A ) -> [_ x / j ]_ B e. Fin ) |
| 152 | 57 1 151 122 | fprod2d | |- ( ph -> prod_ x e. A prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E = prod_ z e. U_ x e. A ( { x } X. [_ x / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
| 153 | 51 2 79 123 | fprod2d | |- ( ph -> prod_ y e. C prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E = prod_ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
| 154 | 146 152 153 | 3eqtr4d | |- ( ph -> prod_ x e. A prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E = prod_ y e. C prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E ) |
| 155 | nfcv | |- F/_ x prod_ k e. B E |
|
| 156 | nfcv | |- F/_ j y |
|
| 157 | 156 108 | nfcsbw | |- F/_ j [_ y / k ]_ [_ x / j ]_ E |
| 158 | 29 157 | nfcprod | |- F/_ j prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E |
| 159 | nfcv | |- F/_ y E |
|
| 160 | nfcsb1v | |- F/_ k [_ y / k ]_ E |
|
| 161 | csbeq1a | |- ( k = y -> E = [_ y / k ]_ E ) |
|
| 162 | 159 160 161 | cbvprodi | |- prod_ k e. B E = prod_ y e. B [_ y / k ]_ E |
| 163 | 111 | csbeq2dv | |- ( j = x -> [_ y / k ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
| 164 | 163 | adantr | |- ( ( j = x /\ y e. B ) -> [_ y / k ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
| 165 | 32 164 | prodeq12dv | |- ( j = x -> prod_ y e. B [_ y / k ]_ E = prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E ) |
| 166 | 162 165 | eqtrid | |- ( j = x -> prod_ k e. B E = prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E ) |
| 167 | 155 158 166 | cbvprodi | |- prod_ j e. A prod_ k e. B E = prod_ x e. A prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E |
| 168 | nfcv | |- F/_ y prod_ j e. D E |
|
| 169 | 37 116 | nfcprod | |- F/_ k prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E |
| 170 | nfcv | |- F/_ x E |
|
| 171 | 170 108 111 | cbvprodi | |- prod_ j e. D E = prod_ x e. D [_ x / j ]_ E |
| 172 | 118 | adantr | |- ( ( k = y /\ x e. D ) -> [_ x / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
| 173 | 40 172 | prodeq12dv | |- ( k = y -> prod_ x e. D [_ x / j ]_ E = prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E ) |
| 174 | 171 173 | eqtrid | |- ( k = y -> prod_ j e. D E = prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E ) |
| 175 | 168 169 174 | cbvprodi | |- prod_ k e. C prod_ j e. D E = prod_ y e. C prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E |
| 176 | 154 167 175 | 3eqtr4g | |- ( ph -> prod_ j e. A prod_ k e. B E = prod_ k e. C prod_ j e. D E ) |