This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a union of Cartesian products. Analogue of elxp for nonconstant B ( x ) . (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliunxp | ⊢ ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | ⊢ Rel ( { 𝑥 } × 𝐵 ) | |
| 2 | 1 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 Rel ( { 𝑥 } × 𝐵 ) |
| 3 | reliun | ⊢ ( Rel ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 Rel ( { 𝑥 } × 𝐵 ) ) | |
| 4 | 2 3 | mpbir | ⊢ Rel ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| 5 | elrel | ⊢ ( ( Rel ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑥 ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) → ∃ 𝑥 ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ) |
| 7 | 6 | pm4.71ri | ⊢ ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
| 8 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) | |
| 9 | 8 | nfel2 | ⊢ Ⅎ 𝑥 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
| 10 | 9 | 19.41 | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) |
| 11 | 19.41v | ⊢ ( ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ↔ ( ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) | |
| 12 | eleq1 | ⊢ ( 𝐶 = 〈 𝑥 , 𝑦 〉 → ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ) | |
| 13 | opeliunxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( 𝐶 = 〈 𝑥 , 𝑦 〉 → ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 15 | 14 | pm5.32i | ⊢ ( ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ↔ ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 16 | 15 | exbii | ⊢ ( ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ↔ ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 17 | 11 16 | bitr3i | ⊢ ( ( ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ↔ ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 18 | 17 | exbii | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 19 | 7 10 18 | 3bitr2i | ⊢ ( 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |