This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The valid Godel formulas of height ( N + 1 ) is disjoint with the difference ( ( Fmlasuc suc N ) \ ( Fmlasuc N ) ) , expressed by formulas constructed from Godel-sets for the Sheffer stroke NAND and Godel-set of universal quantification based on the valid Godel formulas of height ( N + 1 ) . (Contributed by AV, 20-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmlasucdisj | ⊢ ( 𝑁 ∈ ω → ( ( Fmla ‘ suc 𝑁 ) ∩ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) } ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑓 ∈ V | |
| 2 | eqeq1 | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) | |
| 3 | 2 | rexbidv | ⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 4 | eqeq1 | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 = ∀𝑔 𝑖 𝑢 ↔ 𝑓 = ∀𝑔 𝑖 𝑢 ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ↔ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ) |
| 6 | 3 5 | orbi12d | ⊢ ( 𝑥 = 𝑓 → ( ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ↔ ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 8 | 2 | 2rexbidv | ⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 9 | 7 8 | orbi12d | ⊢ ( 𝑥 = 𝑓 → ( ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) ↔ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) ) |
| 10 | 1 9 | elab | ⊢ ( 𝑓 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) } ↔ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 11 | gonar | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) → ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑁 ) ) ) | |
| 12 | elndif | ⊢ ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) → ¬ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) |
| 14 | 13 | intnanrd | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) ) |
| 15 | 11 14 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) ) |
| 16 | 15 | ex | ⊢ ( 𝑁 ∈ ω → ( ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) → ¬ ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) ) ) |
| 17 | 16 | con2d | ⊢ ( 𝑁 ∈ ω → ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 18 | 17 | impl | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) |
| 19 | elneeldif | ⊢ ( ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → 𝑎 ≠ 𝑢 ) | |
| 20 | 19 | necomd | ⊢ ( ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → 𝑢 ≠ 𝑎 ) |
| 21 | 20 | ancoms | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → 𝑢 ≠ 𝑎 ) |
| 22 | 21 | neneqd | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 𝑢 = 𝑎 ) |
| 23 | 22 | orcd | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ( ¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏 ) ) |
| 24 | ianor | ⊢ ( ¬ ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑏 ) ↔ ( ¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏 ) ) | |
| 25 | vex | ⊢ 𝑢 ∈ V | |
| 26 | vex | ⊢ 𝑣 ∈ V | |
| 27 | 25 26 | opth | ⊢ ( 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ↔ ( 𝑢 = 𝑎 ∧ 𝑣 = 𝑏 ) ) |
| 28 | 24 27 | xchnxbir | ⊢ ( ¬ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ↔ ( ¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏 ) ) |
| 29 | 23 28 | sylibr | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 30 | 29 | olcd | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ( ¬ 1o = 1o ∨ ¬ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) ) |
| 31 | ianor | ⊢ ( ¬ ( 1o = 1o ∧ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) ↔ ( ¬ 1o = 1o ∨ ¬ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) ) | |
| 32 | gonafv | ⊢ ( ( 𝑢 ∈ V ∧ 𝑣 ∈ V ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) | |
| 33 | 32 | el2v | ⊢ ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 |
| 34 | gonafv | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ) | |
| 35 | 34 | el2v | ⊢ ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 |
| 36 | 33 35 | eqeq12i | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ↔ 〈 1o , 〈 𝑢 , 𝑣 〉 〉 = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ) |
| 37 | 1oex | ⊢ 1o ∈ V | |
| 38 | opex | ⊢ 〈 𝑢 , 𝑣 〉 ∈ V | |
| 39 | 37 38 | opth | ⊢ ( 〈 1o , 〈 𝑢 , 𝑣 〉 〉 = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ↔ ( 1o = 1o ∧ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) ) |
| 40 | 36 39 | bitri | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ( 1o = 1o ∧ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) ) |
| 41 | 31 40 | xchnxbir | ⊢ ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ( ¬ 1o = 1o ∨ ¬ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) ) |
| 42 | 30 41 | sylibr | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 43 | 42 | ralrimivw | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 44 | 43 | ralrimiva | ⊢ ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 45 | 44 | adantl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 47 | gonanegoal | ⊢ ( 𝑢 ⊼𝑔 𝑣 ) ≠ ∀𝑔 𝑗 𝑎 | |
| 48 | 47 | neii | ⊢ ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 |
| 49 | 48 | a1i | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) |
| 50 | 49 | ralrimivw | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) |
| 51 | 50 | ralrimivw | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) |
| 52 | r19.26 | ⊢ ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ↔ ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) | |
| 53 | 46 51 52 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) |
| 54 | 18 53 | jca | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) ) |
| 55 | eleq1 | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ↔ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) ) | |
| 56 | 55 | notbid | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ↔ ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 57 | eqeq1 | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) ) | |
| 58 | 57 | notbid | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) ) |
| 59 | 58 | ralbidv | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) ) |
| 60 | eqeq1 | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( 𝑓 = ∀𝑔 𝑗 𝑎 ↔ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) | |
| 61 | 60 | notbid | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ↔ ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) |
| 62 | 61 | ralbidv | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ↔ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) |
| 63 | 59 62 | anbi12d | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) ) |
| 64 | 63 | ralbidv | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) ) |
| 65 | 56 64 | anbi12d | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 66 | 54 65 | syl5ibrcom | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) ) → ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 67 | 66 | rexlimdva | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 68 | goalr | ⊢ ( ( 𝑁 ∈ ω ∧ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) → 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) | |
| 69 | 68 12 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) |
| 70 | 69 | ex | ⊢ ( 𝑁 ∈ ω → ( ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) → ¬ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ) |
| 71 | 70 | con2d | ⊢ ( 𝑁 ∈ ω → ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ¬ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 72 | 71 | imp | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ¬ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ¬ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) |
| 74 | gonanegoal | ⊢ ( 𝑎 ⊼𝑔 𝑏 ) ≠ ∀𝑔 𝑖 𝑢 | |
| 75 | 74 | nesymi | ⊢ ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) |
| 76 | 75 | a1i | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 77 | 76 | ralrimivw | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 78 | 77 | ralrimivw | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 79 | 22 | olcd | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ( ¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎 ) ) |
| 80 | ianor | ⊢ ( ¬ ( 𝑖 = 𝑗 ∧ 𝑢 = 𝑎 ) ↔ ( ¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎 ) ) | |
| 81 | vex | ⊢ 𝑖 ∈ V | |
| 82 | 81 25 | opth | ⊢ ( 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ↔ ( 𝑖 = 𝑗 ∧ 𝑢 = 𝑎 ) ) |
| 83 | 80 82 | xchnxbir | ⊢ ( ¬ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ↔ ( ¬ 𝑖 = 𝑗 ∨ ¬ 𝑢 = 𝑎 ) ) |
| 84 | 79 83 | sylibr | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ) |
| 85 | 84 | olcd | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ( ¬ 2o = 2o ∨ ¬ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ) ) |
| 86 | ianor | ⊢ ( ¬ ( 2o = 2o ∧ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ) ↔ ( ¬ 2o = 2o ∨ ¬ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ) ) | |
| 87 | 2oex | ⊢ 2o ∈ V | |
| 88 | opex | ⊢ 〈 𝑖 , 𝑢 〉 ∈ V | |
| 89 | 87 88 | opth | ⊢ ( 〈 2o , 〈 𝑖 , 𝑢 〉 〉 = 〈 2o , 〈 𝑗 , 𝑎 〉 〉 ↔ ( 2o = 2o ∧ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ) ) |
| 90 | 86 89 | xchnxbir | ⊢ ( ¬ 〈 2o , 〈 𝑖 , 𝑢 〉 〉 = 〈 2o , 〈 𝑗 , 𝑎 〉 〉 ↔ ( ¬ 2o = 2o ∨ ¬ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ) ) |
| 91 | df-goal | ⊢ ∀𝑔 𝑖 𝑢 = 〈 2o , 〈 𝑖 , 𝑢 〉 〉 | |
| 92 | df-goal | ⊢ ∀𝑔 𝑗 𝑎 = 〈 2o , 〈 𝑗 , 𝑎 〉 〉 | |
| 93 | 91 92 | eqeq12i | ⊢ ( ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ↔ 〈 2o , 〈 𝑖 , 𝑢 〉 〉 = 〈 2o , 〈 𝑗 , 𝑎 〉 〉 ) |
| 94 | 90 93 | xchnxbir | ⊢ ( ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ↔ ( ¬ 2o = 2o ∨ ¬ 〈 𝑖 , 𝑢 〉 = 〈 𝑗 , 𝑎 〉 ) ) |
| 95 | 85 94 | sylibr | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) |
| 96 | 95 | ralrimivw | ⊢ ( ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) |
| 97 | 96 | ralrimiva | ⊢ ( 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) |
| 98 | 97 | adantl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) |
| 99 | 98 | adantr | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) |
| 100 | r19.26 | ⊢ ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ↔ ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ) | |
| 101 | 78 99 100 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ) |
| 102 | 73 101 | jca | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ( ¬ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ) ) |
| 103 | eleq1 | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ↔ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ) ) | |
| 104 | 103 | notbid | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ¬ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ↔ ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 105 | eqeq1 | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ↔ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ) ) | |
| 106 | 105 | notbid | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ) ) |
| 107 | 106 | ralbidv | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ) ) |
| 108 | eqeq1 | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ↔ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) | |
| 109 | 108 | notbid | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ↔ ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 110 | 109 | ralbidv | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ↔ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 111 | 107 110 | anbi12d | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ↔ ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) |
| 112 | 111 | ralbidv | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ↔ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) |
| 113 | 104 112 | anbi12d | ⊢ ( ∀𝑔 𝑖 𝑢 = 𝑓 → ( ( ¬ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 114 | 113 | eqcoms | ⊢ ( 𝑓 = ∀𝑔 𝑖 𝑢 → ( ( ¬ ∀𝑔 𝑖 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ∀𝑔 𝑖 𝑢 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ∀𝑔 𝑖 𝑢 = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 115 | 102 114 | syl5ibcom | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ω ) → ( 𝑓 = ∀𝑔 𝑖 𝑢 → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 116 | 115 | rexlimdva | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ( ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 117 | 67 116 | jaod | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ( ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 118 | 117 | rexlimdva | ⊢ ( 𝑁 ∈ ω → ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 119 | elndif | ⊢ ( 𝑣 ∈ ( Fmla ‘ 𝑁 ) → ¬ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) | |
| 120 | 119 | adantl | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) |
| 121 | 120 | intnand | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ) |
| 122 | 11 121 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ) |
| 123 | 122 | ex | ⊢ ( 𝑁 ∈ ω → ( ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) → ¬ ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) ) ) |
| 124 | 123 | con2d | ⊢ ( 𝑁 ∈ ω → ( ( 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 125 | 124 | impl | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ) |
| 126 | elneeldif | ⊢ ( ( 𝑏 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → 𝑏 ≠ 𝑣 ) | |
| 127 | 126 | necomd | ⊢ ( ( 𝑏 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → 𝑣 ≠ 𝑏 ) |
| 128 | 127 | ancoms | ⊢ ( ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) → 𝑣 ≠ 𝑏 ) |
| 129 | 128 | neneqd | ⊢ ( ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 𝑣 = 𝑏 ) |
| 130 | 129 | olcd | ⊢ ( ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) → ( ¬ 𝑢 = 𝑎 ∨ ¬ 𝑣 = 𝑏 ) ) |
| 131 | 130 28 | sylibr | ⊢ ( ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 132 | 131 | intnand | ⊢ ( ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ( 1o = 1o ∧ 〈 𝑢 , 𝑣 〉 = 〈 𝑎 , 𝑏 〉 ) ) |
| 133 | 132 40 | sylnibr | ⊢ ( ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 134 | 133 | ralrimiva | ⊢ ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 135 | 134 | ralrimivw | ⊢ ( 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 136 | 135 | adantl | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ) |
| 137 | 48 | a1i | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) |
| 138 | 137 | ralrimivw | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) |
| 139 | 138 | ralrimivw | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) |
| 140 | 136 139 52 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) |
| 141 | 125 140 | jca | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) ) |
| 142 | eleq1 | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ↔ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ) ) | |
| 143 | 142 | notbid | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ↔ ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 144 | eqeq1 | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ↔ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ) ) | |
| 145 | 144 | notbid | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ) ) |
| 146 | 145 | ralbidv | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ) ) |
| 147 | eqeq1 | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ↔ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) | |
| 148 | 147 | notbid | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ↔ ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 149 | 148 | ralbidv | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ↔ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 150 | 146 149 | anbi12d | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ↔ ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) |
| 151 | 150 | ralbidv | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ↔ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) |
| 152 | 143 151 | anbi12d | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = 𝑓 → ( ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 153 | 152 | eqcoms | ⊢ ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ( ¬ ( 𝑢 ⊼𝑔 𝑣 ) ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 154 | 141 153 | syl5ibcom | ⊢ ( ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) ∧ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ) → ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 155 | 154 | rexlimdva | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ) → ( ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 156 | 155 | rexlimdva | ⊢ ( 𝑁 ∈ ω → ( ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 157 | 118 156 | jaod | ⊢ ( 𝑁 ∈ ω → ( ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ) → ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 158 | isfmlasuc | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ↔ ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) | |
| 159 | 158 | elvd | ⊢ ( 𝑁 ∈ ω → ( 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ↔ ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 160 | 159 | notbid | ⊢ ( 𝑁 ∈ ω → ( ¬ 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ↔ ¬ ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 161 | ioran | ⊢ ( ¬ ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ¬ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) | |
| 162 | ralnex | ⊢ ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ↔ ¬ ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ) | |
| 163 | ralnex | ⊢ ( ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ↔ ¬ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) | |
| 164 | 162 163 | anbi12i | ⊢ ( ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ( ¬ ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ¬ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 165 | ioran | ⊢ ( ¬ ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ( ¬ ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ¬ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) | |
| 166 | 164 165 | bitr4i | ⊢ ( ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ¬ ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 167 | 166 | ralbii | ⊢ ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ¬ ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 168 | ralnex | ⊢ ( ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ¬ ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ¬ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) | |
| 169 | 167 168 | bitr2i | ⊢ ( ¬ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ↔ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) |
| 170 | 169 | anbi2i | ⊢ ( ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ¬ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) |
| 171 | 161 170 | bitri | ⊢ ( ¬ ( 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑏 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∨ ∃ 𝑗 ∈ ω 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) |
| 172 | 160 171 | bitrdi | ⊢ ( 𝑁 ∈ ω → ( ¬ 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ↔ ( ¬ 𝑓 ∈ ( Fmla ‘ 𝑁 ) ∧ ∀ 𝑎 ∈ ( Fmla ‘ 𝑁 ) ( ∀ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ¬ 𝑓 = ( 𝑎 ⊼𝑔 𝑏 ) ∧ ∀ 𝑗 ∈ ω ¬ 𝑓 = ∀𝑔 𝑗 𝑎 ) ) ) ) |
| 173 | 157 172 | sylibrd | ⊢ ( 𝑁 ∈ ω → ( ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ) → ¬ 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ) ) |
| 174 | 10 173 | biimtrid | ⊢ ( 𝑁 ∈ ω → ( 𝑓 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) } → ¬ 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ) ) |
| 175 | 174 | ralrimiv | ⊢ ( 𝑁 ∈ ω → ∀ 𝑓 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) } ¬ 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ) |
| 176 | disjr | ⊢ ( ( ( Fmla ‘ suc 𝑁 ) ∩ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) } ) = ∅ ↔ ∀ 𝑓 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) } ¬ 𝑓 ∈ ( Fmla ‘ suc 𝑁 ) ) | |
| 177 | 175 176 | sylibr | ⊢ ( 𝑁 ∈ ω → ( ( Fmla ‘ suc 𝑁 ) ∩ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( Fmla ‘ suc 𝑁 ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 𝑢 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( Fmla ‘ suc 𝑁 ) ∖ ( Fmla ‘ 𝑁 ) ) 𝑥 = ( 𝑢 ⊼𝑔 𝑣 ) ) } ) = ∅ ) |