This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Godel-set of universal quantification. Here N e.om corresponds to vN , and U represents another formula, and this expression is [ A. x ph ] = A.g N U where x is the N -th variable, U = [ ph ] is the code for ph . Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-goal | ⊢ ∀𝑔 𝑁 𝑈 = 〈 2o , 〈 𝑁 , 𝑈 〉 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cN | ⊢ 𝑁 | |
| 1 | cU | ⊢ 𝑈 | |
| 2 | 1 0 | cgol | ⊢ ∀𝑔 𝑁 𝑈 |
| 3 | c2o | ⊢ 2o | |
| 4 | 0 1 | cop | ⊢ 〈 𝑁 , 𝑈 〉 |
| 5 | 3 4 | cop | ⊢ 〈 2o , 〈 𝑁 , 𝑈 〉 〉 |
| 6 | 2 5 | wceq | ⊢ ∀𝑔 𝑁 𝑈 = 〈 2o , 〈 𝑁 , 𝑈 〉 〉 |