This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of the satisfaction predicate as function over wff codes in any model M and any binary relation E on M for a natural number N is the set of valid Godel formulas of height N . (Contributed by AV, 13-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfdmfmla | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | 1 1 | pm3.2i | ⊢ ( ∅ ∈ V ∧ ∅ ∈ V ) |
| 3 | 2 | jctr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( ∅ ∈ V ∧ ∅ ∈ V ) ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( ∅ ∈ V ∧ ∅ ∈ V ) ) ) |
| 5 | satfdm | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( ∅ ∈ V ∧ ∅ ∈ V ) ) → ∀ 𝑛 ∈ ω dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ∀ 𝑛 ∈ ω dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) |
| 7 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑛 ) = ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) | |
| 8 | 7 | dmeqd | ⊢ ( 𝑛 = 𝑁 → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑛 ) = dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) |
| 9 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) | |
| 10 | 9 | dmeqd | ⊢ ( 𝑛 = 𝑁 → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( 𝑛 = 𝑁 → ( dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ↔ dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) ) |
| 12 | 11 | rspcv | ⊢ ( 𝑁 ∈ ω → ( ∀ 𝑛 ∈ ω dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ∀ 𝑛 ∈ ω dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) ) |
| 14 | 6 13 | mpd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
| 15 | elelsuc | ⊢ ( 𝑁 ∈ ω → 𝑁 ∈ suc ω ) | |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → 𝑁 ∈ suc ω ) |
| 17 | fmlafv | ⊢ ( 𝑁 ∈ suc ω → ( Fmla ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( Fmla ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
| 19 | 14 18 | eqtr4d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → dom ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) |