This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the "Godel-set of universal quantification" applied to a class is a Godel formula, the class is also a Godel formula. Remark: The reverse is not valid for A being of the same height as the "Godel-set of universal quantification". (Contributed by AV, 22-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goalr | ⊢ ( ( 𝑁 ∈ ω ∧ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | goaln0 | ⊢ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) → 𝑁 ≠ ∅ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑁 ∈ ω ∧ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → 𝑁 ≠ ∅ ) |
| 3 | nnsuc | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 ) | |
| 4 | suceq | ⊢ ( 𝑥 = ∅ → suc 𝑥 = suc ∅ ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑥 = ∅ → ( Fmla ‘ suc 𝑥 ) = ( Fmla ‘ suc ∅ ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑥 = ∅ → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 7 | 5 | eleq2d | ⊢ ( 𝑥 = ∅ → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 9 | suceq | ⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( Fmla ‘ suc 𝑥 ) = ( Fmla ‘ suc 𝑦 ) ) |
| 11 | 10 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 12 | 10 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑦 ) ) ) |
| 13 | 11 12 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑦 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑦 ) ) ) ) |
| 14 | suceq | ⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( Fmla ‘ suc 𝑥 ) = ( Fmla ‘ suc suc 𝑦 ) ) |
| 16 | 15 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑦 ) ) ) |
| 17 | 15 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ 𝑎 ∈ ( Fmla ‘ suc suc 𝑦 ) ) ) |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑦 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑦 ) ) ) ) |
| 19 | suceq | ⊢ ( 𝑥 = 𝑛 → suc 𝑥 = suc 𝑛 ) | |
| 20 | 19 | fveq2d | ⊢ ( 𝑥 = 𝑛 → ( Fmla ‘ suc 𝑥 ) = ( Fmla ‘ suc 𝑛 ) ) |
| 21 | 20 | eleq2d | ⊢ ( 𝑥 = 𝑛 → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) |
| 22 | 20 | eleq2d | ⊢ ( 𝑥 = 𝑛 → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) |
| 23 | 21 22 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) ) |
| 24 | peano1 | ⊢ ∅ ∈ ω | |
| 25 | df-goal | ⊢ ∀𝑔 𝑖 𝑎 = 〈 2o , 〈 𝑖 , 𝑎 〉 〉 | |
| 26 | opex | ⊢ 〈 2o , 〈 𝑖 , 𝑎 〉 〉 ∈ V | |
| 27 | 25 26 | eqeltri | ⊢ ∀𝑔 𝑖 𝑎 ∈ V |
| 28 | isfmlasuc | ⊢ ( ( ∅ ∈ ω ∧ ∀𝑔 𝑖 𝑎 ∈ V ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc ∅ ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ ∅ ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑘 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 ) ) ) ) | |
| 29 | 24 27 28 | mp2an | ⊢ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc ∅ ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ ∅ ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑘 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 ) ) ) |
| 30 | eqeq1 | ⊢ ( 𝑥 = ∀𝑔 𝑖 𝑎 → ( 𝑥 = ( 𝑘 ∈𝑔 𝑗 ) ↔ ∀𝑔 𝑖 𝑎 = ( 𝑘 ∈𝑔 𝑗 ) ) ) | |
| 31 | 30 | 2rexbidv | ⊢ ( 𝑥 = ∀𝑔 𝑖 𝑎 → ( ∃ 𝑘 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑘 ∈𝑔 𝑗 ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ( 𝑘 ∈𝑔 𝑗 ) ) ) |
| 32 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑥 ∈ V ∣ ∃ 𝑘 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑘 ∈𝑔 𝑗 ) } | |
| 33 | 31 32 | elrab2 | ⊢ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ ∅ ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ V ∧ ∃ 𝑘 ∈ ω ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ( 𝑘 ∈𝑔 𝑗 ) ) ) |
| 34 | 25 | a1i | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑗 ∈ ω ) → ∀𝑔 𝑖 𝑎 = 〈 2o , 〈 𝑖 , 𝑎 〉 〉 ) |
| 35 | goel | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑘 ∈𝑔 𝑗 ) = 〈 ∅ , 〈 𝑘 , 𝑗 〉 〉 ) | |
| 36 | 34 35 | eqeq12d | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∀𝑔 𝑖 𝑎 = ( 𝑘 ∈𝑔 𝑗 ) ↔ 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 ∅ , 〈 𝑘 , 𝑗 〉 〉 ) ) |
| 37 | 2oex | ⊢ 2o ∈ V | |
| 38 | opex | ⊢ 〈 𝑖 , 𝑎 〉 ∈ V | |
| 39 | 37 38 | opth | ⊢ ( 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 ∅ , 〈 𝑘 , 𝑗 〉 〉 ↔ ( 2o = ∅ ∧ 〈 𝑖 , 𝑎 〉 = 〈 𝑘 , 𝑗 〉 ) ) |
| 40 | 2on0 | ⊢ 2o ≠ ∅ | |
| 41 | eqneqall | ⊢ ( 2o = ∅ → ( 2o ≠ ∅ → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) | |
| 42 | 40 41 | mpi | ⊢ ( 2o = ∅ → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 43 | 42 | adantr | ⊢ ( ( 2o = ∅ ∧ 〈 𝑖 , 𝑎 〉 = 〈 𝑘 , 𝑗 〉 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 44 | 39 43 | sylbi | ⊢ ( 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 ∅ , 〈 𝑘 , 𝑗 〉 〉 → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 45 | 36 44 | biimtrdi | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∀𝑔 𝑖 𝑎 = ( 𝑘 ∈𝑔 𝑗 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 46 | 45 | rexlimdva | ⊢ ( 𝑘 ∈ ω → ( ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ( 𝑘 ∈𝑔 𝑗 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 47 | 46 | rexlimiv | ⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑗 ∈ ω ∀𝑔 𝑖 𝑎 = ( 𝑘 ∈𝑔 𝑗 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 48 | 33 47 | simplbiim | ⊢ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 49 | gonanegoal | ⊢ ( 𝑢 ⊼𝑔 𝑣 ) ≠ ∀𝑔 𝑖 𝑎 | |
| 50 | eqneqall | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑖 𝑎 → ( ( 𝑢 ⊼𝑔 𝑣 ) ≠ ∀𝑔 𝑖 𝑎 → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) | |
| 51 | 49 50 | mpi | ⊢ ( ( 𝑢 ⊼𝑔 𝑣 ) = ∀𝑔 𝑖 𝑎 → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 52 | 51 | eqcoms | ⊢ ( ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 53 | 52 | a1i | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) → ( ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 54 | 53 | rexlimdva | ⊢ ( 𝑢 ∈ ( Fmla ‘ ∅ ) → ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 55 | df-goal | ⊢ ∀𝑔 𝑘 𝑢 = 〈 2o , 〈 𝑘 , 𝑢 〉 〉 | |
| 56 | 25 55 | eqeq12i | ⊢ ( ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 ↔ 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 2o , 〈 𝑘 , 𝑢 〉 〉 ) |
| 57 | 37 38 | opth | ⊢ ( 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 2o , 〈 𝑘 , 𝑢 〉 〉 ↔ ( 2o = 2o ∧ 〈 𝑖 , 𝑎 〉 = 〈 𝑘 , 𝑢 〉 ) ) |
| 58 | vex | ⊢ 𝑖 ∈ V | |
| 59 | vex | ⊢ 𝑎 ∈ V | |
| 60 | 58 59 | opth | ⊢ ( 〈 𝑖 , 𝑎 〉 = 〈 𝑘 , 𝑢 〉 ↔ ( 𝑖 = 𝑘 ∧ 𝑎 = 𝑢 ) ) |
| 61 | eleq1w | ⊢ ( 𝑢 = 𝑎 → ( 𝑢 ∈ ( Fmla ‘ ∅ ) ↔ 𝑎 ∈ ( Fmla ‘ ∅ ) ) ) | |
| 62 | fmlasssuc | ⊢ ( ∅ ∈ ω → ( Fmla ‘ ∅ ) ⊆ ( Fmla ‘ suc ∅ ) ) | |
| 63 | 24 62 | ax-mp | ⊢ ( Fmla ‘ ∅ ) ⊆ ( Fmla ‘ suc ∅ ) |
| 64 | 63 | sseli | ⊢ ( 𝑎 ∈ ( Fmla ‘ ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 65 | 61 64 | biimtrdi | ⊢ ( 𝑢 = 𝑎 → ( 𝑢 ∈ ( Fmla ‘ ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 66 | 65 | eqcoms | ⊢ ( 𝑎 = 𝑢 → ( 𝑢 ∈ ( Fmla ‘ ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 67 | 60 66 | simplbiim | ⊢ ( 〈 𝑖 , 𝑎 〉 = 〈 𝑘 , 𝑢 〉 → ( 𝑢 ∈ ( Fmla ‘ ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 68 | 57 67 | simplbiim | ⊢ ( 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 2o , 〈 𝑘 , 𝑢 〉 〉 → ( 𝑢 ∈ ( Fmla ‘ ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 69 | 68 | com12 | ⊢ ( 𝑢 ∈ ( Fmla ‘ ∅ ) → ( 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 2o , 〈 𝑘 , 𝑢 〉 〉 → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 70 | 69 | adantr | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑘 ∈ ω ) → ( 〈 2o , 〈 𝑖 , 𝑎 〉 〉 = 〈 2o , 〈 𝑘 , 𝑢 〉 〉 → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 71 | 56 70 | biimtrid | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑘 ∈ ω ) → ( ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 72 | 71 | rexlimdva | ⊢ ( 𝑢 ∈ ( Fmla ‘ ∅ ) → ( ∃ 𝑘 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 73 | 54 72 | jaod | ⊢ ( 𝑢 ∈ ( Fmla ‘ ∅ ) → ( ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑘 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 74 | 73 | rexlimiv | ⊢ ( ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑘 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 75 | 48 74 | jaoi | ⊢ ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ ∅ ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ∀𝑔 𝑖 𝑎 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑘 ∈ ω ∀𝑔 𝑖 𝑎 = ∀𝑔 𝑘 𝑢 ) ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 76 | 29 75 | sylbi | ⊢ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 77 | goalrlem | ⊢ ( 𝑦 ∈ ω → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑦 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑦 ) ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc suc 𝑦 ) → 𝑎 ∈ ( Fmla ‘ suc suc 𝑦 ) ) ) ) | |
| 78 | 8 13 18 23 76 77 | finds | ⊢ ( 𝑛 ∈ ω → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) |
| 79 | 78 | adantr | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) |
| 80 | fveq2 | ⊢ ( 𝑁 = suc 𝑛 → ( Fmla ‘ 𝑁 ) = ( Fmla ‘ suc 𝑛 ) ) | |
| 81 | 80 | eleq2d | ⊢ ( 𝑁 = suc 𝑛 → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) ↔ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) |
| 82 | 80 | eleq2d | ⊢ ( 𝑁 = suc 𝑛 → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) |
| 83 | 81 82 | imbi12d | ⊢ ( 𝑁 = suc 𝑛 → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) ) |
| 84 | 83 | adantl | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) ↔ ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) → 𝑎 ∈ ( Fmla ‘ suc 𝑛 ) ) ) ) |
| 85 | 79 84 | mpbird | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑁 = suc 𝑛 ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 86 | 85 | rexlimiva | ⊢ ( ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 87 | 3 86 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 88 | 87 | impancom | ⊢ ( ( 𝑁 ∈ ω ∧ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → ( 𝑁 ≠ ∅ → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| 89 | 2 88 | mpd | ⊢ ( ( 𝑁 ∈ ω ∧ ∀𝑔 𝑖 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) → 𝑎 ∈ ( Fmla ‘ 𝑁 ) ) |