This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfmlasuc | ⊢ ( ( 𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ ( Fmla ‘ suc 𝑁 ) ↔ ( 𝐹 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmlasuc | ⊢ ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉 ) → ( Fmla ‘ suc 𝑁 ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ ( Fmla ‘ suc 𝑁 ) ↔ 𝐹 ∈ ( ( Fmla ‘ 𝑁 ) ∪ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ) ) |
| 4 | elun | ⊢ ( 𝐹 ∈ ( ( Fmla ‘ 𝑁 ) ∪ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( 𝐹 ∈ ( Fmla ‘ 𝑁 ) ∨ 𝐹 ∈ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ) | |
| 5 | 4 | a1i | ⊢ ( ( 𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ ( ( Fmla ‘ 𝑁 ) ∪ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( 𝐹 ∈ ( Fmla ‘ 𝑁 ) ∨ 𝐹 ∈ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ) ) |
| 6 | eqeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) | |
| 7 | 6 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ↔ ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ) ) |
| 8 | eqeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 = ∀𝑔 𝑖 𝑢 ↔ 𝐹 = ∀𝑔 𝑖 𝑢 ) ) | |
| 9 | 8 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ↔ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) |
| 10 | 7 9 | orbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ↔ ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 12 | 11 | elabg | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ∈ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ↔ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) ) |
| 14 | 13 | orbi2d | ⊢ ( ( 𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉 ) → ( ( 𝐹 ∈ ( Fmla ‘ 𝑁 ) ∨ 𝐹 ∈ { 𝑓 ∣ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝑓 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝑓 = ∀𝑔 𝑖 𝑢 ) } ) ↔ ( 𝐹 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) ) ) |
| 15 | 3 5 14 | 3bitrd | ⊢ ( ( 𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ∈ ( Fmla ‘ suc 𝑁 ) ↔ ( 𝐹 ∈ ( Fmla ‘ 𝑁 ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( Fmla ‘ 𝑁 ) 𝐹 = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω 𝐹 = ∀𝑔 𝑖 𝑢 ) ) ) ) |