This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the "Godel-set of NAND" applied to classes is a Godel formula, the classes are also Godel formulas. Remark: The reverse is not valid for A or B being of the same height as the "Godel-set of NAND". (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gonar | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) ) → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gonan0 | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) → 𝑁 ≠ ∅ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) ) → 𝑁 ≠ ∅ ) |
| 3 | nnsuc | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ∃ 𝑥 ∈ ω 𝑁 = suc 𝑥 ) | |
| 4 | suceq | ⊢ ( 𝑑 = ∅ → suc 𝑑 = suc ∅ ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑑 = ∅ → ( Fmla ‘ suc 𝑑 ) = ( Fmla ‘ suc ∅ ) ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑑 = ∅ → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) ↔ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 7 | 5 | eleq2d | ⊢ ( 𝑑 = ∅ → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 8 | 5 | eleq2d | ⊢ ( 𝑑 = ∅ → ( 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑑 = ∅ → ( ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 10 | 6 9 | imbi12d | ⊢ ( 𝑑 = ∅ → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc ∅ ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) ) |
| 11 | suceq | ⊢ ( 𝑑 = 𝑐 → suc 𝑑 = suc 𝑐 ) | |
| 12 | 11 | fveq2d | ⊢ ( 𝑑 = 𝑐 → ( Fmla ‘ suc 𝑑 ) = ( Fmla ‘ suc 𝑐 ) ) |
| 13 | 12 | eleq2d | ⊢ ( 𝑑 = 𝑐 → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) ↔ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑐 ) ) ) |
| 14 | 12 | eleq2d | ⊢ ( 𝑑 = 𝑐 → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑐 ) ) ) |
| 15 | 12 | eleq2d | ⊢ ( 𝑑 = 𝑐 → ( 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑏 ∈ ( Fmla ‘ suc 𝑐 ) ) ) |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑑 = 𝑐 → ( ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ suc 𝑐 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑐 ) ) ) ) |
| 17 | 13 16 | imbi12d | ⊢ ( 𝑑 = 𝑐 → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑐 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑐 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑐 ) ) ) ) ) |
| 18 | suceq | ⊢ ( 𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐 ) | |
| 19 | 18 | fveq2d | ⊢ ( 𝑑 = suc 𝑐 → ( Fmla ‘ suc 𝑑 ) = ( Fmla ‘ suc suc 𝑐 ) ) |
| 20 | 19 | eleq2d | ⊢ ( 𝑑 = suc 𝑐 → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) ↔ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑐 ) ) ) |
| 21 | 19 | eleq2d | ⊢ ( 𝑑 = suc 𝑐 → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑎 ∈ ( Fmla ‘ suc suc 𝑐 ) ) ) |
| 22 | 19 | eleq2d | ⊢ ( 𝑑 = suc 𝑐 → ( 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑏 ∈ ( Fmla ‘ suc suc 𝑐 ) ) ) |
| 23 | 21 22 | anbi12d | ⊢ ( 𝑑 = suc 𝑐 → ( ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑐 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑐 ) ) ) ) |
| 24 | 20 23 | imbi12d | ⊢ ( 𝑑 = suc 𝑐 → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑐 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑐 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑐 ) ) ) ) ) |
| 25 | suceq | ⊢ ( 𝑑 = 𝑥 → suc 𝑑 = suc 𝑥 ) | |
| 26 | 25 | fveq2d | ⊢ ( 𝑑 = 𝑥 → ( Fmla ‘ suc 𝑑 ) = ( Fmla ‘ suc 𝑥 ) ) |
| 27 | 26 | eleq2d | ⊢ ( 𝑑 = 𝑥 → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) ↔ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑥 ) ) ) |
| 28 | 26 | eleq2d | ⊢ ( 𝑑 = 𝑥 → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ) ) |
| 29 | 26 | eleq2d | ⊢ ( 𝑑 = 𝑥 → ( 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ↔ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) |
| 30 | 28 29 | anbi12d | ⊢ ( 𝑑 = 𝑥 → ( ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) ) |
| 31 | 27 30 | imbi12d | ⊢ ( 𝑑 = 𝑥 → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑑 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑑 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑑 ) ) ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑥 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) ) ) |
| 32 | peano1 | ⊢ ∅ ∈ ω | |
| 33 | ovex | ⊢ ( 𝑎 ⊼𝑔 𝑏 ) ∈ V | |
| 34 | isfmlasuc | ⊢ ( ( ∅ ∈ ω ∧ ( 𝑎 ⊼𝑔 𝑏 ) ∈ V ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc ∅ ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ ∅ ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) ) ) ) | |
| 35 | 32 33 34 | mp2an | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc ∅ ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ ∅ ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) ) ) |
| 36 | eqeq1 | ⊢ ( 𝑥 = ( 𝑎 ⊼𝑔 𝑏 ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 37 | 36 | 2rexbidv | ⊢ ( 𝑥 = ( 𝑎 ⊼𝑔 𝑏 ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 38 | fmla0 | ⊢ ( Fmla ‘ ∅ ) = { 𝑥 ∈ V ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) } | |
| 39 | 37 38 | elrab2 | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ ∅ ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 40 | gonafv | ⊢ ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ) | |
| 41 | 40 | el2v | ⊢ ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 |
| 42 | 41 | a1i | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ) |
| 43 | goel | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∈𝑔 𝑗 ) = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) | |
| 44 | 42 43 | eqeq12d | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) ↔ 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ) ) |
| 45 | 1oex | ⊢ 1o ∈ V | |
| 46 | opex | ⊢ 〈 𝑎 , 𝑏 〉 ∈ V | |
| 47 | 45 46 | opth | ⊢ ( 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 ↔ ( 1o = ∅ ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑖 , 𝑗 〉 ) ) |
| 48 | 1n0 | ⊢ 1o ≠ ∅ | |
| 49 | eqneqall | ⊢ ( 1o = ∅ → ( 1o ≠ ∅ → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) | |
| 50 | 48 49 | mpi | ⊢ ( 1o = ∅ → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( 1o = ∅ ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑖 , 𝑗 〉 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 52 | 47 51 | sylbi | ⊢ ( 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 ∅ , 〈 𝑖 , 𝑗 〉 〉 → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 53 | 44 52 | biimtrdi | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 54 | 53 | rexlimdva | ⊢ ( 𝑖 ∈ ω → ( ∃ 𝑗 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 55 | 54 | rexlimiv | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 56 | 55 | adantl | ⊢ ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ V ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 57 | 39 56 | sylbi | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ ∅ ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 58 | 41 | a1i | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) → ( 𝑎 ⊼𝑔 𝑏 ) = 〈 1o , 〈 𝑎 , 𝑏 〉 〉 ) |
| 59 | gonafv | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) → ( 𝑢 ⊼𝑔 𝑣 ) = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) | |
| 60 | 58 59 | eqeq12d | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ↔ 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ) ) |
| 61 | 45 46 | opth | ⊢ ( 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 ↔ ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) ) |
| 62 | vex | ⊢ 𝑎 ∈ V | |
| 63 | vex | ⊢ 𝑏 ∈ V | |
| 64 | 62 63 | opth | ⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ↔ ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) ) |
| 65 | simpl | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑎 = 𝑢 ) | |
| 66 | 65 | equcomd | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑢 = 𝑎 ) |
| 67 | 66 | eleq1d | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑢 ∈ ( Fmla ‘ ∅ ) ↔ 𝑎 ∈ ( Fmla ‘ ∅ ) ) ) |
| 68 | simpr | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑏 = 𝑣 ) | |
| 69 | 68 | equcomd | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑣 = 𝑏 ) |
| 70 | 69 | eleq1d | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑣 ∈ ( Fmla ‘ ∅ ) ↔ 𝑏 ∈ ( Fmla ‘ ∅ ) ) ) |
| 71 | 67 70 | anbi12d | ⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ ∅ ) ) ) ) |
| 72 | 64 71 | sylbi | ⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ ∅ ) ) ) ) |
| 73 | 72 | adantl | ⊢ ( ( 1o = 1o ∧ 〈 𝑎 , 𝑏 〉 = 〈 𝑢 , 𝑣 〉 ) → ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ ∅ ) ) ) ) |
| 74 | 61 73 | sylbi | ⊢ ( 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 → ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ ∅ ) ) ) ) |
| 75 | fmlasssuc | ⊢ ( ∅ ∈ ω → ( Fmla ‘ ∅ ) ⊆ ( Fmla ‘ suc ∅ ) ) | |
| 76 | 32 75 | ax-mp | ⊢ ( Fmla ‘ ∅ ) ⊆ ( Fmla ‘ suc ∅ ) |
| 77 | 76 | sseli | ⊢ ( 𝑎 ∈ ( Fmla ‘ ∅ ) → 𝑎 ∈ ( Fmla ‘ suc ∅ ) ) |
| 78 | 76 | sseli | ⊢ ( 𝑏 ∈ ( Fmla ‘ ∅ ) → 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) |
| 79 | 77 78 | anim12i | ⊢ ( ( 𝑎 ∈ ( Fmla ‘ ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ ∅ ) ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 80 | 74 79 | biimtrdi | ⊢ ( 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 → ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 81 | 80 | com12 | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) → ( 〈 1o , 〈 𝑎 , 𝑏 〉 〉 = 〈 1o , 〈 𝑢 , 𝑣 〉 〉 → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 82 | 60 81 | sylbid | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑣 ∈ ( Fmla ‘ ∅ ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 83 | 82 | rexlimdva | ⊢ ( 𝑢 ∈ ( Fmla ‘ ∅ ) → ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 84 | gonanegoal | ⊢ ( 𝑎 ⊼𝑔 𝑏 ) ≠ ∀𝑔 𝑖 𝑢 | |
| 85 | eqneqall | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( ( 𝑎 ⊼𝑔 𝑏 ) ≠ ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) | |
| 86 | 84 85 | mpi | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 87 | 86 | a1i | ⊢ ( ( 𝑢 ∈ ( Fmla ‘ ∅ ) ∧ 𝑖 ∈ ω ) → ( ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 88 | 87 | rexlimdva | ⊢ ( 𝑢 ∈ ( Fmla ‘ ∅ ) → ( ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 89 | 83 88 | jaod | ⊢ ( 𝑢 ∈ ( Fmla ‘ ∅ ) → ( ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) ) |
| 90 | 89 | rexlimiv | ⊢ ( ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 91 | 57 90 | jaoi | ⊢ ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ ∅ ) ∨ ∃ 𝑢 ∈ ( Fmla ‘ ∅ ) ( ∃ 𝑣 ∈ ( Fmla ‘ ∅ ) ( 𝑎 ⊼𝑔 𝑏 ) = ( 𝑢 ⊼𝑔 𝑣 ) ∨ ∃ 𝑖 ∈ ω ( 𝑎 ⊼𝑔 𝑏 ) = ∀𝑔 𝑖 𝑢 ) ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 92 | 35 91 | sylbi | ⊢ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc ∅ ) → ( 𝑎 ∈ ( Fmla ‘ suc ∅ ) ∧ 𝑏 ∈ ( Fmla ‘ suc ∅ ) ) ) |
| 93 | gonarlem | ⊢ ( 𝑐 ∈ ω → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑐 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑐 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑐 ) ) ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc suc 𝑐 ) → ( 𝑎 ∈ ( Fmla ‘ suc suc 𝑐 ) ∧ 𝑏 ∈ ( Fmla ‘ suc suc 𝑐 ) ) ) ) ) | |
| 94 | 10 17 24 31 92 93 | finds | ⊢ ( 𝑥 ∈ ω → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑥 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) ) |
| 95 | 94 | adantr | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑁 = suc 𝑥 ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑥 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) ) |
| 96 | fveq2 | ⊢ ( 𝑁 = suc 𝑥 → ( Fmla ‘ 𝑁 ) = ( Fmla ‘ suc 𝑥 ) ) | |
| 97 | 96 | eleq2d | ⊢ ( 𝑁 = suc 𝑥 → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) ↔ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑥 ) ) ) |
| 98 | 96 | eleq2d | ⊢ ( 𝑁 = suc 𝑥 → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ↔ 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ) ) |
| 99 | 96 | eleq2d | ⊢ ( 𝑁 = suc 𝑥 → ( 𝑏 ∈ ( Fmla ‘ 𝑁 ) ↔ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) |
| 100 | 98 99 | anbi12d | ⊢ ( 𝑁 = suc 𝑥 → ( ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ↔ ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) ) |
| 101 | 97 100 | imbi12d | ⊢ ( 𝑁 = suc 𝑥 → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑥 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) ) ) |
| 102 | 101 | adantl | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑁 = suc 𝑥 ) → ( ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) ↔ ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ suc 𝑥 ) → ( 𝑎 ∈ ( Fmla ‘ suc 𝑥 ) ∧ 𝑏 ∈ ( Fmla ‘ suc 𝑥 ) ) ) ) ) |
| 103 | 95 102 | mpbird | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑁 = suc 𝑥 ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) ) |
| 104 | 103 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ω 𝑁 = suc 𝑥 → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) ) |
| 105 | 3 104 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑁 ≠ ∅ ) → ( ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) ) |
| 106 | 105 | impancom | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) ) → ( 𝑁 ≠ ∅ → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) ) |
| 107 | 2 106 | mpd | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑎 ⊼𝑔 𝑏 ) ∈ ( Fmla ‘ 𝑁 ) ) → ( 𝑎 ∈ ( Fmla ‘ 𝑁 ) ∧ 𝑏 ∈ ( Fmla ‘ 𝑁 ) ) ) |