This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | ||
| fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | ||
| fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | ||
| fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | ||
| fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | ||
| Assertion | fin23lem31 | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | |
| 4 | fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | |
| 5 | fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | |
| 6 | fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | |
| 7 | 2 | ssfin3ds | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ∪ ran 𝑡 ∈ 𝐹 ) |
| 8 | 1 2 3 4 5 6 | fin23lem29 | ⊢ ∪ ran 𝑍 ⊆ ∪ ran 𝑡 |
| 9 | 8 | a1i | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
| 10 | 1 2 | fin23lem21 | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ≠ ∅ ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∩ ran 𝑈 ≠ ∅ ) |
| 12 | n0 | ⊢ ( ∩ ran 𝑈 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ∩ ran 𝑈 ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∃ 𝑎 𝑎 ∈ ∩ ran 𝑈 ) |
| 14 | 1 | fnseqom | ⊢ 𝑈 Fn ω |
| 15 | fndm | ⊢ ( 𝑈 Fn ω → dom 𝑈 = ω ) | |
| 16 | 14 15 | ax-mp | ⊢ dom 𝑈 = ω |
| 17 | peano1 | ⊢ ∅ ∈ ω | |
| 18 | 17 | ne0ii | ⊢ ω ≠ ∅ |
| 19 | 16 18 | eqnetri | ⊢ dom 𝑈 ≠ ∅ |
| 20 | dm0rn0 | ⊢ ( dom 𝑈 = ∅ ↔ ran 𝑈 = ∅ ) | |
| 21 | 20 | necon3bii | ⊢ ( dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅ ) |
| 22 | 19 21 | mpbi | ⊢ ran 𝑈 ≠ ∅ |
| 23 | intssuni | ⊢ ( ran 𝑈 ≠ ∅ → ∩ ran 𝑈 ⊆ ∪ ran 𝑈 ) | |
| 24 | 22 23 | ax-mp | ⊢ ∩ ran 𝑈 ⊆ ∪ ran 𝑈 |
| 25 | 1 | fin23lem16 | ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
| 26 | 24 25 | sseqtri | ⊢ ∩ ran 𝑈 ⊆ ∪ ran 𝑡 |
| 27 | 26 | sseli | ⊢ ( 𝑎 ∈ ∩ ran 𝑈 → 𝑎 ∈ ∪ ran 𝑡 ) |
| 28 | f1fun | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → Fun 𝑡 ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → Fun 𝑡 ) |
| 30 | 1 2 3 4 5 6 | fin23lem30 | ⊢ ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |
| 31 | 29 30 | syl | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |
| 32 | disj | ⊢ ( ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ∪ ran 𝑍 ¬ 𝑎 ∈ ∩ ran 𝑈 ) | |
| 33 | 31 32 | sylib | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∀ 𝑎 ∈ ∪ ran 𝑍 ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
| 34 | rsp | ⊢ ( ∀ 𝑎 ∈ ∪ ran 𝑍 ¬ 𝑎 ∈ ∩ ran 𝑈 → ( 𝑎 ∈ ∪ ran 𝑍 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ( 𝑎 ∈ ∪ ran 𝑍 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
| 36 | 35 | con2d | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ( 𝑎 ∈ ∩ ran 𝑈 → ¬ 𝑎 ∈ ∪ ran 𝑍 ) ) |
| 37 | 36 | imp | ⊢ ( ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) ∧ 𝑎 ∈ ∩ ran 𝑈 ) → ¬ 𝑎 ∈ ∪ ran 𝑍 ) |
| 38 | nelne1 | ⊢ ( ( 𝑎 ∈ ∪ ran 𝑡 ∧ ¬ 𝑎 ∈ ∪ ran 𝑍 ) → ∪ ran 𝑡 ≠ ∪ ran 𝑍 ) | |
| 39 | 27 37 38 | syl2an2 | ⊢ ( ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) ∧ 𝑎 ∈ ∩ ran 𝑈 ) → ∪ ran 𝑡 ≠ ∪ ran 𝑍 ) |
| 40 | 39 | necomd | ⊢ ( ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) ∧ 𝑎 ∈ ∩ ran 𝑈 ) → ∪ ran 𝑍 ≠ ∪ ran 𝑡 ) |
| 41 | 13 40 | exlimddv | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∪ ran 𝑍 ≠ ∪ ran 𝑡 ) |
| 42 | df-pss | ⊢ ( ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ↔ ( ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ∧ ∪ ran 𝑍 ≠ ∪ ran 𝑡 ) ) | |
| 43 | 9 41 42 | sylanbrc | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
| 44 | 7 43 | sylan2 | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ( 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
| 45 | 44 | 3impb | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |