This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | ||
| fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | ||
| fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | ||
| fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | ||
| fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | ||
| Assertion | fin23lem29 | ⊢ ∪ ran 𝑍 ⊆ ∪ ran 𝑡 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | |
| 4 | fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | |
| 5 | fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | |
| 6 | fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | |
| 7 | eqif | ⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) | |
| 8 | 7 | biimpi | ⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) |
| 9 | rneq | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ran 𝑍 = ran ( 𝑡 ∘ 𝑅 ) ) | |
| 10 | 9 | unieqd | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ∪ ran 𝑍 = ∪ ran ( 𝑡 ∘ 𝑅 ) ) |
| 11 | rncoss | ⊢ ran ( 𝑡 ∘ 𝑅 ) ⊆ ran 𝑡 | |
| 12 | 11 | unissi | ⊢ ∪ ran ( 𝑡 ∘ 𝑅 ) ⊆ ∪ ran 𝑡 |
| 13 | 10 12 | eqsstrdi | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
| 15 | rneq | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | |
| 16 | 15 | unieqd | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ∪ ran 𝑍 = ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
| 17 | rncoss | ⊢ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) | |
| 18 | 17 | unissi | ⊢ ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
| 19 | unissb | ⊢ ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ⊆ ∪ ran 𝑡 ↔ ∀ 𝑎 ∈ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) 𝑎 ⊆ ∪ ran 𝑡 ) | |
| 20 | abid | ⊢ ( 𝑎 ∈ { 𝑎 ∣ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } ↔ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) | |
| 21 | fvssunirn | ⊢ ( 𝑡 ‘ 𝑧 ) ⊆ ∪ ran 𝑡 | |
| 22 | 21 | a1i | ⊢ ( 𝑧 ∈ 𝑃 → ( 𝑡 ‘ 𝑧 ) ⊆ ∪ ran 𝑡 ) |
| 23 | 22 | ssdifssd | ⊢ ( 𝑧 ∈ 𝑃 → ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ⊆ ∪ ran 𝑡 ) |
| 24 | sseq1 | ⊢ ( 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ⊆ ∪ ran 𝑡 ↔ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ⊆ ∪ ran 𝑡 ) ) | |
| 25 | 23 24 | syl5ibrcom | ⊢ ( 𝑧 ∈ 𝑃 → ( 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → 𝑎 ⊆ ∪ ran 𝑡 ) ) |
| 26 | 25 | rexlimiv | ⊢ ( ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → 𝑎 ⊆ ∪ ran 𝑡 ) |
| 27 | 20 26 | sylbi | ⊢ ( 𝑎 ∈ { 𝑎 ∣ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } → 𝑎 ⊆ ∪ ran 𝑡 ) |
| 28 | eqid | ⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) | |
| 29 | 28 | rnmpt | ⊢ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = { 𝑎 ∣ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } |
| 30 | 27 29 | eleq2s | ⊢ ( 𝑎 ∈ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → 𝑎 ⊆ ∪ ran 𝑡 ) |
| 31 | 19 30 | mprgbir | ⊢ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ⊆ ∪ ran 𝑡 |
| 32 | 18 31 | sstri | ⊢ ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran 𝑡 |
| 33 | 16 32 | eqsstrdi | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
| 34 | 33 | adantl | ⊢ ( ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
| 35 | 14 34 | jaoi | ⊢ ( ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
| 36 | 6 8 35 | mp2b | ⊢ ∪ ran 𝑍 ⊆ ∪ ran 𝑡 |