This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isfin3ds.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| Assertion | ssfin3ds | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3ds.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑎 ‘ suc 𝑏 ) ⊆ ( 𝑎 ‘ 𝑏 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 2 | pwexg | ⊢ ( 𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V ) | |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐴 ) | |
| 4 | 3 | sspwd | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → 𝒫 𝐵 ⊆ 𝒫 𝐴 ) |
| 5 | mapss | ⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴 ) → ( 𝒫 𝐵 ↑m ω ) ⊆ ( 𝒫 𝐴 ↑m ω ) ) | |
| 6 | 2 4 5 | syl2an2r | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝒫 𝐵 ↑m ω ) ⊆ ( 𝒫 𝐴 ↑m ω ) ) |
| 7 | 1 | isfin3ds | ⊢ ( 𝐴 ∈ 𝐹 → ( 𝐴 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 8 | 7 | ibi | ⊢ ( 𝐴 ∈ 𝐹 → ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 10 | ssralv | ⊢ ( ( 𝒫 𝐵 ↑m ω ) ⊆ ( 𝒫 𝐴 ↑m ω ) → ( ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) → ∀ 𝑓 ∈ ( 𝒫 𝐵 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) | |
| 11 | 6 9 10 | sylc | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → ∀ 𝑓 ∈ ( 𝒫 𝐵 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
| 12 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐹 ) → 𝐵 ∈ V ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
| 14 | 1 | isfin3ds | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐵 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐵 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑓 ‘ suc 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
| 16 | 11 15 | mpbird | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ 𝐹 ) |