This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Wrap the previous construction into a function to hide the hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | ||
| fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | ||
| fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | ||
| fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | ||
| fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | ||
| Assertion | fin23lem32 | ⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | |
| 4 | fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | |
| 5 | fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | |
| 6 | fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | |
| 7 | 1 2 3 4 5 6 | fin23lem28 | ⊢ ( 𝑡 : ω –1-1→ V → 𝑍 : ω –1-1→ V ) |
| 8 | 7 | ad2antrl | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑍 : ω –1-1→ V ) |
| 9 | simprl | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 : ω –1-1→ V ) | |
| 10 | simpl | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝐺 ∈ 𝐹 ) | |
| 11 | simprr | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ∪ ran 𝑡 ⊆ 𝐺 ) | |
| 12 | 1 2 3 4 5 6 | fin23lem31 | ⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
| 14 | f1fn | ⊢ ( 𝑡 : ω –1-1→ V → 𝑡 Fn ω ) | |
| 15 | dffn3 | ⊢ ( 𝑡 Fn ω ↔ 𝑡 : ω ⟶ ran 𝑡 ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝑡 : ω –1-1→ V → 𝑡 : ω ⟶ ran 𝑡 ) |
| 17 | 16 | ad2antrl | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 : ω ⟶ ran 𝑡 ) |
| 18 | sspwuni | ⊢ ( ran 𝑡 ⊆ 𝒫 𝐺 ↔ ∪ ran 𝑡 ⊆ 𝐺 ) | |
| 19 | 18 | biimpri | ⊢ ( ∪ ran 𝑡 ⊆ 𝐺 → ran 𝑡 ⊆ 𝒫 𝐺 ) |
| 20 | 19 | ad2antll | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ran 𝑡 ⊆ 𝒫 𝐺 ) |
| 21 | 17 20 | fssd | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 : ω ⟶ 𝒫 𝐺 ) |
| 22 | pwexg | ⊢ ( 𝐺 ∈ 𝐹 → 𝒫 𝐺 ∈ V ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝒫 𝐺 ∈ V ) |
| 24 | vex | ⊢ 𝑡 ∈ V | |
| 25 | f1f | ⊢ ( 𝑡 : ω –1-1→ V → 𝑡 : ω ⟶ V ) | |
| 26 | dmfex | ⊢ ( ( 𝑡 ∈ V ∧ 𝑡 : ω ⟶ V ) → ω ∈ V ) | |
| 27 | 24 25 26 | sylancr | ⊢ ( 𝑡 : ω –1-1→ V → ω ∈ V ) |
| 28 | 27 | ad2antrl | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ω ∈ V ) |
| 29 | 23 28 | elmapd | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↔ 𝑡 : ω ⟶ 𝒫 𝐺 ) ) |
| 30 | 21 29 | mpbird | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ) |
| 31 | f1f | ⊢ ( 𝑍 : ω –1-1→ V → 𝑍 : ω ⟶ V ) | |
| 32 | 8 31 | syl | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑍 : ω ⟶ V ) |
| 33 | 32 28 | fexd | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑍 ∈ V ) |
| 34 | eqid | ⊢ ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) | |
| 35 | 34 | fvmpt2 | ⊢ ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ∧ 𝑍 ∈ V ) → ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 ) |
| 36 | 30 33 35 | syl2anc | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 ) |
| 37 | f1eq1 | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ↔ 𝑍 : ω –1-1→ V ) ) | |
| 38 | rneq | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = ran 𝑍 ) | |
| 39 | 38 | unieqd | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = ∪ ran 𝑍 ) |
| 40 | 39 | psseq1d | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ( ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ↔ ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) ) |
| 41 | 37 40 | anbi12d | ⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ( ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ↔ ( 𝑍 : ω –1-1→ V ∧ ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) ) ) |
| 42 | 36 41 | syl | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ↔ ( 𝑍 : ω –1-1→ V ∧ ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) ) ) |
| 43 | 8 13 42 | mpbir2and | ⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) |
| 44 | 43 | ex | ⊢ ( 𝐺 ∈ 𝐹 → ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 45 | 44 | alrimiv | ⊢ ( 𝐺 ∈ 𝐹 → ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 46 | ovex | ⊢ ( 𝒫 𝐺 ↑m ω ) ∈ V | |
| 47 | 46 | mptex | ⊢ ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ∈ V |
| 48 | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) | |
| 49 | 48 | nfeq2 | ⊢ Ⅎ 𝑡 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) |
| 50 | fveq1 | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ) | |
| 51 | f1eq1 | ⊢ ( ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ↔ ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ) ) | |
| 52 | 50 51 | syl | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ↔ ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ) ) |
| 53 | 50 | rneqd | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ran ( 𝑓 ‘ 𝑡 ) = ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ) |
| 54 | 53 | unieqd | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ∪ ran ( 𝑓 ‘ 𝑡 ) = ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ) |
| 55 | 54 | psseq1d | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ↔ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) |
| 56 | 52 55 | anbi12d | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ↔ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 57 | 56 | imbi2d | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ↔ ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) ) |
| 58 | 49 57 | albid | ⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ↔ ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) ) |
| 59 | 47 58 | spcev | ⊢ ( ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) → ∃ 𝑓 ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 60 | 45 59 | syl | ⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 61 | f1eq1 | ⊢ ( 𝑏 = 𝑡 → ( 𝑏 : ω –1-1→ V ↔ 𝑡 : ω –1-1→ V ) ) | |
| 62 | rneq | ⊢ ( 𝑏 = 𝑡 → ran 𝑏 = ran 𝑡 ) | |
| 63 | 62 | unieqd | ⊢ ( 𝑏 = 𝑡 → ∪ ran 𝑏 = ∪ ran 𝑡 ) |
| 64 | 63 | sseq1d | ⊢ ( 𝑏 = 𝑡 → ( ∪ ran 𝑏 ⊆ 𝐺 ↔ ∪ ran 𝑡 ⊆ 𝐺 ) ) |
| 65 | 61 64 | anbi12d | ⊢ ( 𝑏 = 𝑡 → ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) ↔ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) ) |
| 66 | fveq2 | ⊢ ( 𝑏 = 𝑡 → ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑡 ) ) | |
| 67 | f1eq1 | ⊢ ( ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑡 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ↔ ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ) ) | |
| 68 | 66 67 | syl | ⊢ ( 𝑏 = 𝑡 → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ↔ ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ) ) |
| 69 | 66 | rneqd | ⊢ ( 𝑏 = 𝑡 → ran ( 𝑓 ‘ 𝑏 ) = ran ( 𝑓 ‘ 𝑡 ) ) |
| 70 | 69 | unieqd | ⊢ ( 𝑏 = 𝑡 → ∪ ran ( 𝑓 ‘ 𝑏 ) = ∪ ran ( 𝑓 ‘ 𝑡 ) ) |
| 71 | 70 63 | psseq12d | ⊢ ( 𝑏 = 𝑡 → ( ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ↔ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) |
| 72 | 68 71 | anbi12d | ⊢ ( 𝑏 = 𝑡 → ( ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ↔ ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 73 | 65 72 | imbi12d | ⊢ ( 𝑏 = 𝑡 → ( ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ↔ ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) ) |
| 74 | 73 | cbvalvw | ⊢ ( ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ↔ ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 75 | 74 | exbii | ⊢ ( ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ↔ ∃ 𝑓 ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
| 76 | 60 75 | sylibr | ⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ) |