This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqom.a | ⊢ 𝐺 = seqω ( 𝐹 , 𝐼 ) | |
| Assertion | fnseqom | ⊢ 𝐺 Fn ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqom.a | ⊢ 𝐺 = seqω ( 𝐹 , 𝐼 ) | |
| 2 | seqomlem0 | ⊢ rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = rec ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| 3 | 2 | seqomlem2 | ⊢ ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) Fn ω |
| 4 | df-seqom | ⊢ seqω ( 𝐹 , 𝐼 ) = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) | |
| 5 | 1 4 | eqtri | ⊢ 𝐺 = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) |
| 6 | 5 | fneq1i | ⊢ ( 𝐺 Fn ω ↔ ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) Fn ω ) |
| 7 | 3 6 | mpbir | ⊢ 𝐺 Fn ω |