This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
||
| fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
||
| fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
||
| fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
||
| fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
||
| Assertion | fin23lem31 | |- ( ( t : _om -1-1-> V /\ G e. F /\ U. ran t C_ G ) -> U. ran Z C. U. ran t ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 3 | fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
|
| 4 | fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
|
| 5 | fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
|
| 6 | fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
|
| 7 | 2 | ssfin3ds | |- ( ( G e. F /\ U. ran t C_ G ) -> U. ran t e. F ) |
| 8 | 1 2 3 4 5 6 | fin23lem29 | |- U. ran Z C_ U. ran t |
| 9 | 8 | a1i | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> U. ran Z C_ U. ran t ) |
| 10 | 1 2 | fin23lem21 | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U =/= (/) ) |
| 11 | 10 | ancoms | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> |^| ran U =/= (/) ) |
| 12 | n0 | |- ( |^| ran U =/= (/) <-> E. a a e. |^| ran U ) |
|
| 13 | 11 12 | sylib | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> E. a a e. |^| ran U ) |
| 14 | 1 | fnseqom | |- U Fn _om |
| 15 | fndm | |- ( U Fn _om -> dom U = _om ) |
|
| 16 | 14 15 | ax-mp | |- dom U = _om |
| 17 | peano1 | |- (/) e. _om |
|
| 18 | 17 | ne0ii | |- _om =/= (/) |
| 19 | 16 18 | eqnetri | |- dom U =/= (/) |
| 20 | dm0rn0 | |- ( dom U = (/) <-> ran U = (/) ) |
|
| 21 | 20 | necon3bii | |- ( dom U =/= (/) <-> ran U =/= (/) ) |
| 22 | 19 21 | mpbi | |- ran U =/= (/) |
| 23 | intssuni | |- ( ran U =/= (/) -> |^| ran U C_ U. ran U ) |
|
| 24 | 22 23 | ax-mp | |- |^| ran U C_ U. ran U |
| 25 | 1 | fin23lem16 | |- U. ran U = U. ran t |
| 26 | 24 25 | sseqtri | |- |^| ran U C_ U. ran t |
| 27 | 26 | sseli | |- ( a e. |^| ran U -> a e. U. ran t ) |
| 28 | f1fun | |- ( t : _om -1-1-> V -> Fun t ) |
|
| 29 | 28 | adantr | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> Fun t ) |
| 30 | 1 2 3 4 5 6 | fin23lem30 | |- ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) |
| 31 | 29 30 | syl | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> ( U. ran Z i^i |^| ran U ) = (/) ) |
| 32 | disj | |- ( ( U. ran Z i^i |^| ran U ) = (/) <-> A. a e. U. ran Z -. a e. |^| ran U ) |
|
| 33 | 31 32 | sylib | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> A. a e. U. ran Z -. a e. |^| ran U ) |
| 34 | rsp | |- ( A. a e. U. ran Z -. a e. |^| ran U -> ( a e. U. ran Z -> -. a e. |^| ran U ) ) |
|
| 35 | 33 34 | syl | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> ( a e. U. ran Z -> -. a e. |^| ran U ) ) |
| 36 | 35 | con2d | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> ( a e. |^| ran U -> -. a e. U. ran Z ) ) |
| 37 | 36 | imp | |- ( ( ( t : _om -1-1-> V /\ U. ran t e. F ) /\ a e. |^| ran U ) -> -. a e. U. ran Z ) |
| 38 | nelne1 | |- ( ( a e. U. ran t /\ -. a e. U. ran Z ) -> U. ran t =/= U. ran Z ) |
|
| 39 | 27 37 38 | syl2an2 | |- ( ( ( t : _om -1-1-> V /\ U. ran t e. F ) /\ a e. |^| ran U ) -> U. ran t =/= U. ran Z ) |
| 40 | 39 | necomd | |- ( ( ( t : _om -1-1-> V /\ U. ran t e. F ) /\ a e. |^| ran U ) -> U. ran Z =/= U. ran t ) |
| 41 | 13 40 | exlimddv | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> U. ran Z =/= U. ran t ) |
| 42 | df-pss | |- ( U. ran Z C. U. ran t <-> ( U. ran Z C_ U. ran t /\ U. ran Z =/= U. ran t ) ) |
|
| 43 | 9 41 42 | sylanbrc | |- ( ( t : _om -1-1-> V /\ U. ran t e. F ) -> U. ran Z C. U. ran t ) |
| 44 | 7 43 | sylan2 | |- ( ( t : _om -1-1-> V /\ ( G e. F /\ U. ran t C_ G ) ) -> U. ran Z C. U. ran t ) |
| 45 | 44 | 3impb | |- ( ( t : _om -1-1-> V /\ G e. F /\ U. ran t C_ G ) -> U. ran Z C. U. ran t ) |