This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . X is not empty. We only need here that t has at least one set in its range besides (/) ; the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | ||
| Assertion | fin23lem21 | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | 1 2 | fin23lem17 | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ∈ ran 𝑈 ) |
| 4 | 1 | fnseqom | ⊢ 𝑈 Fn ω |
| 5 | fvelrnb | ⊢ ( 𝑈 Fn ω → ( ∩ ran 𝑈 ∈ ran 𝑈 ↔ ∃ 𝑎 ∈ ω ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ∩ ran 𝑈 ∈ ran 𝑈 ↔ ∃ 𝑎 ∈ ω ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 ) |
| 7 | id | ⊢ ( 𝑎 ∈ ω → 𝑎 ∈ ω ) | |
| 8 | vex | ⊢ 𝑡 ∈ V | |
| 9 | f1f1orn | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → 𝑡 : ω –1-1-onto→ ran 𝑡 ) | |
| 10 | f1oen3g | ⊢ ( ( 𝑡 ∈ V ∧ 𝑡 : ω –1-1-onto→ ran 𝑡 ) → ω ≈ ran 𝑡 ) | |
| 11 | 8 9 10 | sylancr | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → ω ≈ ran 𝑡 ) |
| 12 | ominf | ⊢ ¬ ω ∈ Fin | |
| 13 | ssdif0 | ⊢ ( ran 𝑡 ⊆ { ∅ } ↔ ( ran 𝑡 ∖ { ∅ } ) = ∅ ) | |
| 14 | snfi | ⊢ { ∅ } ∈ Fin | |
| 15 | ssfi | ⊢ ( ( { ∅ } ∈ Fin ∧ ran 𝑡 ⊆ { ∅ } ) → ran 𝑡 ∈ Fin ) | |
| 16 | 14 15 | mpan | ⊢ ( ran 𝑡 ⊆ { ∅ } → ran 𝑡 ∈ Fin ) |
| 17 | enfi | ⊢ ( ω ≈ ran 𝑡 → ( ω ∈ Fin ↔ ran 𝑡 ∈ Fin ) ) | |
| 18 | 16 17 | imbitrrid | ⊢ ( ω ≈ ran 𝑡 → ( ran 𝑡 ⊆ { ∅ } → ω ∈ Fin ) ) |
| 19 | 13 18 | biimtrrid | ⊢ ( ω ≈ ran 𝑡 → ( ( ran 𝑡 ∖ { ∅ } ) = ∅ → ω ∈ Fin ) ) |
| 20 | 19 | necon3bd | ⊢ ( ω ≈ ran 𝑡 → ( ¬ ω ∈ Fin → ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ) ) |
| 21 | 11 12 20 | mpisyl | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ) |
| 22 | n0 | ⊢ ( ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) ) | |
| 23 | eldifsn | ⊢ ( 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) ↔ ( 𝑎 ∈ ran 𝑡 ∧ 𝑎 ≠ ∅ ) ) | |
| 24 | elssuni | ⊢ ( 𝑎 ∈ ran 𝑡 → 𝑎 ⊆ ∪ ran 𝑡 ) | |
| 25 | ssn0 | ⊢ ( ( 𝑎 ⊆ ∪ ran 𝑡 ∧ 𝑎 ≠ ∅ ) → ∪ ran 𝑡 ≠ ∅ ) | |
| 26 | 24 25 | sylan | ⊢ ( ( 𝑎 ∈ ran 𝑡 ∧ 𝑎 ≠ ∅ ) → ∪ ran 𝑡 ≠ ∅ ) |
| 27 | 23 26 | sylbi | ⊢ ( 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) → ∪ ran 𝑡 ≠ ∅ ) |
| 28 | 27 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ ( ran 𝑡 ∖ { ∅ } ) → ∪ ran 𝑡 ≠ ∅ ) |
| 29 | 22 28 | sylbi | ⊢ ( ( ran 𝑡 ∖ { ∅ } ) ≠ ∅ → ∪ ran 𝑡 ≠ ∅ ) |
| 30 | 21 29 | syl | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → ∪ ran 𝑡 ≠ ∅ ) |
| 31 | 1 | fin23lem14 | ⊢ ( ( 𝑎 ∈ ω ∧ ∪ ran 𝑡 ≠ ∅ ) → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) |
| 32 | 7 30 31 | syl2anr | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ 𝑎 ∈ ω ) → ( 𝑈 ‘ 𝑎 ) ≠ ∅ ) |
| 33 | neeq1 | ⊢ ( ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 → ( ( 𝑈 ‘ 𝑎 ) ≠ ∅ ↔ ∩ ran 𝑈 ≠ ∅ ) ) | |
| 34 | 32 33 | syl5ibcom | ⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ 𝑎 ∈ ω ) → ( ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
| 35 | 34 | rexlimdva | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → ( ∃ 𝑎 ∈ ω ( 𝑈 ‘ 𝑎 ) = ∩ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
| 36 | 6 35 | biimtrid | ⊢ ( 𝑡 : ω –1-1→ 𝑉 → ( ∩ ran 𝑈 ∈ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
| 37 | 36 | adantl | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ( ∩ ran 𝑈 ∈ ran 𝑈 → ∩ ran 𝑈 ≠ ∅ ) ) |
| 38 | 3 37 | mpd | ⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ≠ ∅ ) |