This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | ||
| fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | ||
| fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | ||
| fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | ||
| fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | ||
| Assertion | fin23lem30 | ⊢ ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | fin23lem17.f | ⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } | |
| 3 | fin23lem.b | ⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } | |
| 4 | fin23lem.c | ⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) | |
| 5 | fin23lem.d | ⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) | |
| 6 | fin23lem.e | ⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | |
| 7 | eqif | ⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) | |
| 8 | 7 | biimpi | ⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) |
| 9 | simpr | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → Fun 𝑡 ) | |
| 10 | 5 | funmpt2 | ⊢ Fun 𝑅 |
| 11 | funco | ⊢ ( ( Fun 𝑡 ∧ Fun 𝑅 ) → Fun ( 𝑡 ∘ 𝑅 ) ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → Fun ( 𝑡 ∘ 𝑅 ) ) |
| 13 | elunirn | ⊢ ( Fun ( 𝑡 ∘ 𝑅 ) → ( 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ↔ ∃ 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ↔ ∃ 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) ) ) |
| 15 | dmcoss | ⊢ dom ( 𝑡 ∘ 𝑅 ) ⊆ dom 𝑅 | |
| 16 | 15 | sseli | ⊢ ( 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) → 𝑏 ∈ dom 𝑅 ) |
| 17 | fvco | ⊢ ( ( Fun 𝑅 ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) | |
| 18 | 10 17 | mpan | ⊢ ( 𝑏 ∈ dom 𝑅 → ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
| 20 | 19 | eleq2d | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) ↔ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
| 21 | incom | ⊢ ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∩ ∩ ran 𝑈 ) = ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) | |
| 22 | difss | ⊢ ( ω ∖ 𝑃 ) ⊆ ω | |
| 23 | ominf | ⊢ ¬ ω ∈ Fin | |
| 24 | 3 | ssrab3 | ⊢ 𝑃 ⊆ ω |
| 25 | undif | ⊢ ( 𝑃 ⊆ ω ↔ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω ) | |
| 26 | 24 25 | mpbi | ⊢ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω |
| 27 | unfi | ⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) ∈ Fin ) | |
| 28 | 26 27 | eqeltrrid | ⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ω ∈ Fin ) |
| 29 | 28 | ex | ⊢ ( 𝑃 ∈ Fin → ( ( ω ∖ 𝑃 ) ∈ Fin → ω ∈ Fin ) ) |
| 30 | 23 29 | mtoi | ⊢ ( 𝑃 ∈ Fin → ¬ ( ω ∖ 𝑃 ) ∈ Fin ) |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( ω ∖ 𝑃 ) ∈ Fin ) |
| 32 | 5 | fin23lem22 | ⊢ ( ( ( ω ∖ 𝑃 ) ⊆ ω ∧ ¬ ( ω ∖ 𝑃 ) ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
| 33 | 22 31 32 | sylancr | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
| 34 | f1of | ⊢ ( 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) → 𝑅 : ω ⟶ ( ω ∖ 𝑃 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑅 : ω ⟶ ( ω ∖ 𝑃 ) ) |
| 36 | simpr | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑏 ∈ dom 𝑅 ) | |
| 37 | 35 | fdmd | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → dom 𝑅 = ω ) |
| 38 | 36 37 | eleqtrd | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑏 ∈ ω ) |
| 39 | 35 38 | ffvelcdmd | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑅 ‘ 𝑏 ) ∈ ( ω ∖ 𝑃 ) ) |
| 40 | 39 | eldifbd | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( 𝑅 ‘ 𝑏 ) ∈ 𝑃 ) |
| 41 | 3 | eleq2i | ⊢ ( ( 𝑅 ‘ 𝑏 ) ∈ 𝑃 ↔ ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ) |
| 42 | 40 41 | sylnib | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ) |
| 43 | 39 | eldifad | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑅 ‘ 𝑏 ) ∈ ω ) |
| 44 | fveq2 | ⊢ ( 𝑣 = ( 𝑅 ‘ 𝑏 ) → ( 𝑡 ‘ 𝑣 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) | |
| 45 | 44 | sseq2d | ⊢ ( 𝑣 = ( 𝑅 ‘ 𝑏 ) → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
| 46 | 45 | elrab3 | ⊢ ( ( 𝑅 ‘ 𝑏 ) ∈ ω → ( ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
| 47 | 43 46 | syl | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
| 48 | 42 47 | mtbid | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
| 49 | 1 | fin23lem20 | ⊢ ( ( 𝑅 ‘ 𝑏 ) ∈ ω → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) ) |
| 50 | 43 49 | syl | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) ) |
| 51 | orel1 | ⊢ ( ¬ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) → ( ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) ) | |
| 52 | 48 50 51 | sylc | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) |
| 53 | 21 52 | eqtrid | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∩ ∩ ran 𝑈 ) = ∅ ) |
| 54 | disj | ⊢ ( ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) | |
| 55 | 53 54 | sylib | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
| 56 | rsp | ⊢ ( ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 → ( 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
| 58 | 20 57 | sylbid | ⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
| 59 | 58 | ex | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑏 ∈ dom 𝑅 → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) ) |
| 60 | 16 59 | syl5 | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) ) |
| 61 | 60 | rexlimdv | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ∃ 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
| 62 | 14 61 | sylbid | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
| 63 | 62 | ralrimiv | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ∀ 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
| 64 | disj | ⊢ ( ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) | |
| 65 | 63 64 | sylibr | ⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) = ∅ ) |
| 66 | rneq | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ran 𝑍 = ran ( 𝑡 ∘ 𝑅 ) ) | |
| 67 | 66 | unieqd | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ∪ ran 𝑍 = ∪ ran ( 𝑡 ∘ 𝑅 ) ) |
| 68 | 67 | ineq1d | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) ) |
| 69 | 68 | eqeq1d | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ↔ ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) = ∅ ) ) |
| 70 | 65 69 | imbitrrid | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
| 71 | 70 | expd | ⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( 𝑃 ∈ Fin → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) ) |
| 72 | 71 | impcom | ⊢ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
| 73 | rneq | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) | |
| 74 | 73 | unieqd | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ∪ ran 𝑍 = ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
| 75 | 74 | ineq1d | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ∩ ran 𝑈 ) ) |
| 76 | rncoss | ⊢ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) | |
| 77 | 76 | unissi | ⊢ ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
| 78 | disj | ⊢ ( ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) | |
| 79 | eluniab | ⊢ ( 𝑎 ∈ ∪ { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } ↔ ∃ 𝑏 ( 𝑎 ∈ 𝑏 ∧ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ) | |
| 80 | eleq2 | ⊢ ( 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ∈ 𝑏 ↔ 𝑎 ∈ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ) | |
| 81 | eldifn | ⊢ ( 𝑎 ∈ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) | |
| 82 | 80 81 | biimtrdi | ⊢ ( 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ∈ 𝑏 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
| 83 | 82 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ∈ 𝑏 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
| 84 | 83 | impcom | ⊢ ( ( 𝑎 ∈ 𝑏 ∧ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
| 85 | 84 | exlimiv | ⊢ ( ∃ 𝑏 ( 𝑎 ∈ 𝑏 ∧ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
| 86 | 79 85 | sylbi | ⊢ ( 𝑎 ∈ ∪ { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
| 87 | eqid | ⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) | |
| 88 | 87 | rnmpt | ⊢ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } |
| 89 | 88 | unieqi | ⊢ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ∪ { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } |
| 90 | 86 89 | eleq2s | ⊢ ( 𝑎 ∈ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
| 91 | 78 90 | mprgbir | ⊢ ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∩ ∩ ran 𝑈 ) = ∅ |
| 92 | ssdisj | ⊢ ( ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∧ ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∩ ∩ ran 𝑈 ) = ∅ ) → ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ∩ ran 𝑈 ) = ∅ ) | |
| 93 | 77 91 92 | mp2an | ⊢ ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ∩ ran 𝑈 ) = ∅ |
| 94 | 75 93 | eqtrdi | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |
| 95 | 94 | a1d | ⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
| 96 | 95 | adantl | ⊢ ( ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
| 97 | 72 96 | jaoi | ⊢ ( ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
| 98 | 6 8 97 | mp2b | ⊢ ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |