This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . X is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| Assertion | fin23lem20 | ⊢ ( 𝐴 ∈ ω → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | ⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) | |
| 2 | 1 | fnseqom | ⊢ 𝑈 Fn ω |
| 3 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 4 | fnfvelrn | ⊢ ( ( 𝑈 Fn ω ∧ suc 𝐴 ∈ ω ) → ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐴 ∈ ω → ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 ) |
| 6 | intss1 | ⊢ ( ( 𝑈 ‘ suc 𝐴 ) ∈ ran 𝑈 → ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ω → ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) ) |
| 8 | 1 | fin23lem19 | ⊢ ( 𝐴 ∈ ω → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |
| 9 | sstr2 | ⊢ ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝐴 ) ) ) | |
| 10 | ssdisj | ⊢ ( ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) ∧ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) | |
| 11 | 10 | ex | ⊢ ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |
| 12 | 9 11 | orim12d | ⊢ ( ∩ ran 𝑈 ⊆ ( 𝑈 ‘ suc 𝐴 ) → ( ( ( 𝑈 ‘ suc 𝐴 ) ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ( 𝑈 ‘ suc 𝐴 ) ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) ) |
| 13 | 7 8 12 | sylc | ⊢ ( 𝐴 ∈ ω → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝐴 ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ 𝐴 ) ) = ∅ ) ) |