This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of a composition. Theorem 21 of Suppes p. 63. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 and ax-12 . (Revised by TM, 31-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmcoss | ⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl | ⊢ ( ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) → ∃ 𝑧 𝑥 𝐵 𝑧 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | opelco | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐵 𝑦 ↔ 𝑥 𝐵 𝑧 ) ) | |
| 6 | 5 | cbvexvw | ⊢ ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑧 𝑥 𝐵 𝑧 ) |
| 7 | 1 4 6 | 3imtr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 8 | 7 | eximi | ⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) → ∃ 𝑦 ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 9 | 5 | exexw | ⊢ ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑦 ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 10 | 8 9 | sylibr | ⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 11 | 2 | eldm2 | ⊢ ( 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) |
| 12 | 2 | eldm | ⊢ ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 13 | 10 11 12 | 3imtr4i | ⊢ ( 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) → 𝑥 ∈ dom 𝐵 ) |
| 14 | 13 | ssriv | ⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 |