This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
||
| fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
||
| fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
||
| fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
||
| fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
||
| Assertion | fin23lem30 | |- ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 3 | fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
|
| 4 | fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
|
| 5 | fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
|
| 6 | fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
|
| 7 | eqif | |- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) <-> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
|
| 8 | 7 | biimpi | |- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
| 9 | simpr | |- ( ( P e. Fin /\ Fun t ) -> Fun t ) |
|
| 10 | 5 | funmpt2 | |- Fun R |
| 11 | funco | |- ( ( Fun t /\ Fun R ) -> Fun ( t o. R ) ) |
|
| 12 | 9 10 11 | sylancl | |- ( ( P e. Fin /\ Fun t ) -> Fun ( t o. R ) ) |
| 13 | elunirn | |- ( Fun ( t o. R ) -> ( a e. U. ran ( t o. R ) <-> E. b e. dom ( t o. R ) a e. ( ( t o. R ) ` b ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( P e. Fin /\ Fun t ) -> ( a e. U. ran ( t o. R ) <-> E. b e. dom ( t o. R ) a e. ( ( t o. R ) ` b ) ) ) |
| 15 | dmcoss | |- dom ( t o. R ) C_ dom R |
|
| 16 | 15 | sseli | |- ( b e. dom ( t o. R ) -> b e. dom R ) |
| 17 | fvco | |- ( ( Fun R /\ b e. dom R ) -> ( ( t o. R ) ` b ) = ( t ` ( R ` b ) ) ) |
|
| 18 | 10 17 | mpan | |- ( b e. dom R -> ( ( t o. R ) ` b ) = ( t ` ( R ` b ) ) ) |
| 19 | 18 | adantl | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( ( t o. R ) ` b ) = ( t ` ( R ` b ) ) ) |
| 20 | 19 | eleq2d | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( a e. ( ( t o. R ) ` b ) <-> a e. ( t ` ( R ` b ) ) ) ) |
| 21 | incom | |- ( ( t ` ( R ` b ) ) i^i |^| ran U ) = ( |^| ran U i^i ( t ` ( R ` b ) ) ) |
|
| 22 | difss | |- ( _om \ P ) C_ _om |
|
| 23 | ominf | |- -. _om e. Fin |
|
| 24 | 3 | ssrab3 | |- P C_ _om |
| 25 | undif | |- ( P C_ _om <-> ( P u. ( _om \ P ) ) = _om ) |
|
| 26 | 24 25 | mpbi | |- ( P u. ( _om \ P ) ) = _om |
| 27 | unfi | |- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> ( P u. ( _om \ P ) ) e. Fin ) |
|
| 28 | 26 27 | eqeltrrid | |- ( ( P e. Fin /\ ( _om \ P ) e. Fin ) -> _om e. Fin ) |
| 29 | 28 | ex | |- ( P e. Fin -> ( ( _om \ P ) e. Fin -> _om e. Fin ) ) |
| 30 | 23 29 | mtoi | |- ( P e. Fin -> -. ( _om \ P ) e. Fin ) |
| 31 | 30 | ad2antrr | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. ( _om \ P ) e. Fin ) |
| 32 | 5 | fin23lem22 | |- ( ( ( _om \ P ) C_ _om /\ -. ( _om \ P ) e. Fin ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 33 | 22 31 32 | sylancr | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> R : _om -1-1-onto-> ( _om \ P ) ) |
| 34 | f1of | |- ( R : _om -1-1-onto-> ( _om \ P ) -> R : _om --> ( _om \ P ) ) |
|
| 35 | 33 34 | syl | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> R : _om --> ( _om \ P ) ) |
| 36 | simpr | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> b e. dom R ) |
|
| 37 | 35 | fdmd | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> dom R = _om ) |
| 38 | 36 37 | eleqtrd | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> b e. _om ) |
| 39 | 35 38 | ffvelcdmd | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( R ` b ) e. ( _om \ P ) ) |
| 40 | 39 | eldifbd | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. ( R ` b ) e. P ) |
| 41 | 3 | eleq2i | |- ( ( R ` b ) e. P <-> ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } ) |
| 42 | 40 41 | sylnib | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } ) |
| 43 | 39 | eldifad | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( R ` b ) e. _om ) |
| 44 | fveq2 | |- ( v = ( R ` b ) -> ( t ` v ) = ( t ` ( R ` b ) ) ) |
|
| 45 | 44 | sseq2d | |- ( v = ( R ` b ) -> ( |^| ran U C_ ( t ` v ) <-> |^| ran U C_ ( t ` ( R ` b ) ) ) ) |
| 46 | 45 | elrab3 | |- ( ( R ` b ) e. _om -> ( ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } <-> |^| ran U C_ ( t ` ( R ` b ) ) ) ) |
| 47 | 43 46 | syl | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( ( R ` b ) e. { v e. _om | |^| ran U C_ ( t ` v ) } <-> |^| ran U C_ ( t ` ( R ` b ) ) ) ) |
| 48 | 42 47 | mtbid | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> -. |^| ran U C_ ( t ` ( R ` b ) ) ) |
| 49 | 1 | fin23lem20 | |- ( ( R ` b ) e. _om -> ( |^| ran U C_ ( t ` ( R ` b ) ) \/ ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) ) |
| 50 | 43 49 | syl | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( |^| ran U C_ ( t ` ( R ` b ) ) \/ ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) ) |
| 51 | orel1 | |- ( -. |^| ran U C_ ( t ` ( R ` b ) ) -> ( ( |^| ran U C_ ( t ` ( R ` b ) ) \/ ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) -> ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) ) |
|
| 52 | 48 50 51 | sylc | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( |^| ran U i^i ( t ` ( R ` b ) ) ) = (/) ) |
| 53 | 21 52 | eqtrid | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( ( t ` ( R ` b ) ) i^i |^| ran U ) = (/) ) |
| 54 | disj | |- ( ( ( t ` ( R ` b ) ) i^i |^| ran U ) = (/) <-> A. a e. ( t ` ( R ` b ) ) -. a e. |^| ran U ) |
|
| 55 | 53 54 | sylib | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> A. a e. ( t ` ( R ` b ) ) -. a e. |^| ran U ) |
| 56 | rsp | |- ( A. a e. ( t ` ( R ` b ) ) -. a e. |^| ran U -> ( a e. ( t ` ( R ` b ) ) -> -. a e. |^| ran U ) ) |
|
| 57 | 55 56 | syl | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( a e. ( t ` ( R ` b ) ) -> -. a e. |^| ran U ) ) |
| 58 | 20 57 | sylbid | |- ( ( ( P e. Fin /\ Fun t ) /\ b e. dom R ) -> ( a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) |
| 59 | 58 | ex | |- ( ( P e. Fin /\ Fun t ) -> ( b e. dom R -> ( a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) ) |
| 60 | 16 59 | syl5 | |- ( ( P e. Fin /\ Fun t ) -> ( b e. dom ( t o. R ) -> ( a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) ) |
| 61 | 60 | rexlimdv | |- ( ( P e. Fin /\ Fun t ) -> ( E. b e. dom ( t o. R ) a e. ( ( t o. R ) ` b ) -> -. a e. |^| ran U ) ) |
| 62 | 14 61 | sylbid | |- ( ( P e. Fin /\ Fun t ) -> ( a e. U. ran ( t o. R ) -> -. a e. |^| ran U ) ) |
| 63 | 62 | ralrimiv | |- ( ( P e. Fin /\ Fun t ) -> A. a e. U. ran ( t o. R ) -. a e. |^| ran U ) |
| 64 | disj | |- ( ( U. ran ( t o. R ) i^i |^| ran U ) = (/) <-> A. a e. U. ran ( t o. R ) -. a e. |^| ran U ) |
|
| 65 | 63 64 | sylibr | |- ( ( P e. Fin /\ Fun t ) -> ( U. ran ( t o. R ) i^i |^| ran U ) = (/) ) |
| 66 | rneq | |- ( Z = ( t o. R ) -> ran Z = ran ( t o. R ) ) |
|
| 67 | 66 | unieqd | |- ( Z = ( t o. R ) -> U. ran Z = U. ran ( t o. R ) ) |
| 68 | 67 | ineq1d | |- ( Z = ( t o. R ) -> ( U. ran Z i^i |^| ran U ) = ( U. ran ( t o. R ) i^i |^| ran U ) ) |
| 69 | 68 | eqeq1d | |- ( Z = ( t o. R ) -> ( ( U. ran Z i^i |^| ran U ) = (/) <-> ( U. ran ( t o. R ) i^i |^| ran U ) = (/) ) ) |
| 70 | 65 69 | imbitrrid | |- ( Z = ( t o. R ) -> ( ( P e. Fin /\ Fun t ) -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 71 | 70 | expd | |- ( Z = ( t o. R ) -> ( P e. Fin -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) ) |
| 72 | 71 | impcom | |- ( ( P e. Fin /\ Z = ( t o. R ) ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 73 | rneq | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ran Z = ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
|
| 74 | 73 | unieqd | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> U. ran Z = U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
| 75 | 74 | ineq1d | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( U. ran Z i^i |^| ran U ) = ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) i^i |^| ran U ) ) |
| 76 | rncoss | |- ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
|
| 77 | 76 | unissi | |- U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
| 78 | disj | |- ( ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) i^i |^| ran U ) = (/) <-> A. a e. U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) -. a e. |^| ran U ) |
|
| 79 | eluniab | |- ( a e. U. { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } <-> E. b ( a e. b /\ E. z e. P b = ( ( t ` z ) \ |^| ran U ) ) ) |
|
| 80 | eleq2 | |- ( b = ( ( t ` z ) \ |^| ran U ) -> ( a e. b <-> a e. ( ( t ` z ) \ |^| ran U ) ) ) |
|
| 81 | eldifn | |- ( a e. ( ( t ` z ) \ |^| ran U ) -> -. a e. |^| ran U ) |
|
| 82 | 80 81 | biimtrdi | |- ( b = ( ( t ` z ) \ |^| ran U ) -> ( a e. b -> -. a e. |^| ran U ) ) |
| 83 | 82 | rexlimivw | |- ( E. z e. P b = ( ( t ` z ) \ |^| ran U ) -> ( a e. b -> -. a e. |^| ran U ) ) |
| 84 | 83 | impcom | |- ( ( a e. b /\ E. z e. P b = ( ( t ` z ) \ |^| ran U ) ) -> -. a e. |^| ran U ) |
| 85 | 84 | exlimiv | |- ( E. b ( a e. b /\ E. z e. P b = ( ( t ` z ) \ |^| ran U ) ) -> -. a e. |^| ran U ) |
| 86 | 79 85 | sylbi | |- ( a e. U. { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } -> -. a e. |^| ran U ) |
| 87 | eqid | |- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
|
| 88 | 87 | rnmpt | |- ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } |
| 89 | 88 | unieqi | |- U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = U. { b | E. z e. P b = ( ( t ` z ) \ |^| ran U ) } |
| 90 | 86 89 | eleq2s | |- ( a e. U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) -> -. a e. |^| ran U ) |
| 91 | 78 90 | mprgbir | |- ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) i^i |^| ran U ) = (/) |
| 92 | ssdisj | |- ( ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) /\ ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) i^i |^| ran U ) = (/) ) -> ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) i^i |^| ran U ) = (/) ) |
|
| 93 | 77 91 92 | mp2an | |- ( U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) i^i |^| ran U ) = (/) |
| 94 | 75 93 | eqtrdi | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( U. ran Z i^i |^| ran U ) = (/) ) |
| 95 | 94 | a1d | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 96 | 95 | adantl | |- ( ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 97 | 72 96 | jaoi | |- ( ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) -> ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) ) |
| 98 | 6 8 97 | mp2b | |- ( Fun t -> ( U. ran Z i^i |^| ran U ) = (/) ) |