This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of A is in A ". This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002) Use a separate setvar for the right-hand side and avoid ax-pow . (Revised by BTernaryTau, 14-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiint | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | ⊢ ( 𝑧 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑧 ≈ 𝑤 ) | |
| 2 | nnfi | ⊢ ( 𝑤 ∈ ω → 𝑤 ∈ Fin ) | |
| 3 | ensymfib | ⊢ ( 𝑤 ∈ Fin → ( 𝑤 ≈ 𝑧 ↔ 𝑧 ≈ 𝑤 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑤 ∈ ω → ( 𝑤 ≈ 𝑧 ↔ 𝑧 ≈ 𝑤 ) ) |
| 5 | breq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ≈ 𝑧 ↔ ∅ ≈ 𝑧 ) ) | |
| 6 | 5 | anbi2d | ⊢ ( 𝑤 = ∅ → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) ↔ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ ∅ ≈ 𝑧 ) ) ) |
| 7 | 6 | imbi1d | ⊢ ( 𝑤 = ∅ → ( ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ ∅ ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 8 | 7 | albidv | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ ∅ ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 9 | breq1 | ⊢ ( 𝑤 = 𝑡 → ( 𝑤 ≈ 𝑧 ↔ 𝑡 ≈ 𝑧 ) ) | |
| 10 | 9 | anbi2d | ⊢ ( 𝑤 = 𝑡 → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) ↔ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) ) ) |
| 11 | 10 | imbi1d | ⊢ ( 𝑤 = 𝑡 → ( ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 12 | 11 | albidv | ⊢ ( 𝑤 = 𝑡 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 13 | breq1 | ⊢ ( 𝑤 = suc 𝑡 → ( 𝑤 ≈ 𝑧 ↔ suc 𝑡 ≈ 𝑧 ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝑤 = suc 𝑡 → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) ↔ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ suc 𝑡 ≈ 𝑧 ) ) ) |
| 15 | 14 | imbi1d | ⊢ ( 𝑤 = suc 𝑡 → ( ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ suc 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 16 | 15 | albidv | ⊢ ( 𝑤 = suc 𝑡 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ suc 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 17 | en0r | ⊢ ( ∅ ≈ 𝑧 ↔ 𝑧 = ∅ ) | |
| 18 | 17 | biimpi | ⊢ ( ∅ ≈ 𝑧 → 𝑧 = ∅ ) |
| 19 | 18 | anim1i | ⊢ ( ( ∅ ≈ 𝑧 ∧ 𝑧 ≠ ∅ ) → ( 𝑧 = ∅ ∧ 𝑧 ≠ ∅ ) ) |
| 20 | 19 | ancoms | ⊢ ( ( 𝑧 ≠ ∅ ∧ ∅ ≈ 𝑧 ) → ( 𝑧 = ∅ ∧ 𝑧 ≠ ∅ ) ) |
| 21 | 20 | adantll | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ ∅ ≈ 𝑧 ) → ( 𝑧 = ∅ ∧ 𝑧 ≠ ∅ ) ) |
| 22 | df-ne | ⊢ ( 𝑧 ≠ ∅ ↔ ¬ 𝑧 = ∅ ) | |
| 23 | pm3.24 | ⊢ ¬ ( 𝑧 = ∅ ∧ ¬ 𝑧 = ∅ ) | |
| 24 | 23 | pm2.21i | ⊢ ( ( 𝑧 = ∅ ∧ ¬ 𝑧 = ∅ ) → ∩ 𝑧 ∈ 𝐴 ) |
| 25 | 22 24 | sylan2b | ⊢ ( ( 𝑧 = ∅ ∧ 𝑧 ≠ ∅ ) → ∩ 𝑧 ∈ 𝐴 ) |
| 26 | 21 25 | syl | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ ∅ ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) |
| 27 | 26 | ax-gen | ⊢ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ ∅ ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) |
| 28 | 27 | a1i | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ ∅ ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) |
| 29 | nfv | ⊢ Ⅎ 𝑧 ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 | |
| 30 | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) | |
| 31 | bren | ⊢ ( suc 𝑡 ≈ 𝑧 ↔ ∃ 𝑓 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) | |
| 32 | ssel | ⊢ ( 𝑧 ⊆ 𝐴 → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 → ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 ) ) | |
| 33 | f1of | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → 𝑓 : suc 𝑡 ⟶ 𝑧 ) | |
| 34 | vex | ⊢ 𝑡 ∈ V | |
| 35 | 34 | sucid | ⊢ 𝑡 ∈ suc 𝑡 |
| 36 | ffvelcdm | ⊢ ( ( 𝑓 : suc 𝑡 ⟶ 𝑧 ∧ 𝑡 ∈ suc 𝑡 ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) | |
| 37 | 33 35 36 | sylancl | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( 𝑓 ‘ 𝑡 ) ∈ 𝑧 ) |
| 38 | 32 37 | impel | ⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 ) |
| 39 | 38 | adantr | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) ∧ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 ) |
| 40 | df-ne | ⊢ ( ( 𝑓 “ 𝑡 ) ≠ ∅ ↔ ¬ ( 𝑓 “ 𝑡 ) = ∅ ) | |
| 41 | imassrn | ⊢ ( 𝑓 “ 𝑡 ) ⊆ ran 𝑓 | |
| 42 | dff1o2 | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ↔ ( 𝑓 Fn suc 𝑡 ∧ Fun ◡ 𝑓 ∧ ran 𝑓 = 𝑧 ) ) | |
| 43 | 42 | simp3bi | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ran 𝑓 = 𝑧 ) |
| 44 | 41 43 | sseqtrid | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( 𝑓 “ 𝑡 ) ⊆ 𝑧 ) |
| 45 | sstr2 | ⊢ ( ( 𝑓 “ 𝑡 ) ⊆ 𝑧 → ( 𝑧 ⊆ 𝐴 → ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ) ) | |
| 46 | 44 45 | syl | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( 𝑧 ⊆ 𝐴 → ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ) ) |
| 47 | 46 | anim1d | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ( 𝑧 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) → ( ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) ) ) |
| 48 | f1of1 | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → 𝑓 : suc 𝑡 –1-1→ 𝑧 ) | |
| 49 | sssucid | ⊢ 𝑡 ⊆ suc 𝑡 | |
| 50 | vex | ⊢ 𝑓 ∈ V | |
| 51 | f1imaen3g | ⊢ ( ( 𝑓 : suc 𝑡 –1-1→ 𝑧 ∧ 𝑡 ⊆ suc 𝑡 ∧ 𝑓 ∈ V ) → 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) | |
| 52 | 49 50 51 | mp3an23 | ⊢ ( 𝑓 : suc 𝑡 –1-1→ 𝑧 → 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) |
| 53 | 48 52 | syl | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) |
| 54 | 47 53 | jctird | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ( 𝑧 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) → ( ( ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) ∧ 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) ) ) |
| 55 | 50 | imaex | ⊢ ( 𝑓 “ 𝑡 ) ∈ V |
| 56 | sseq1 | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ( 𝑧 ⊆ 𝐴 ↔ ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ) ) | |
| 57 | neeq1 | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ( 𝑧 ≠ ∅ ↔ ( 𝑓 “ 𝑡 ) ≠ ∅ ) ) | |
| 58 | 56 57 | anbi12d | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ↔ ( ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) ) ) |
| 59 | breq2 | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ( 𝑡 ≈ 𝑧 ↔ 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) ) | |
| 60 | 58 59 | anbi12d | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) ↔ ( ( ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) ∧ 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) ) ) |
| 61 | inteq | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ∩ 𝑧 = ∩ ( 𝑓 “ 𝑡 ) ) | |
| 62 | 61 | eleq1d | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ( ∩ 𝑧 ∈ 𝐴 ↔ ∩ ( 𝑓 “ 𝑡 ) ∈ 𝐴 ) ) |
| 63 | 60 62 | imbi12d | ⊢ ( 𝑧 = ( 𝑓 “ 𝑡 ) → ( ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ( ( ( ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) ∧ 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) → ∩ ( 𝑓 “ 𝑡 ) ∈ 𝐴 ) ) ) |
| 64 | 55 63 | spcv | ⊢ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝑓 “ 𝑡 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) ∧ 𝑡 ≈ ( 𝑓 “ 𝑡 ) ) → ∩ ( 𝑓 “ 𝑡 ) ∈ 𝐴 ) ) |
| 65 | 54 64 | sylan9 | ⊢ ( ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ∧ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) → ∩ ( 𝑓 “ 𝑡 ) ∈ 𝐴 ) ) |
| 66 | ineq1 | ⊢ ( 𝑣 = ∩ ( 𝑓 “ 𝑡 ) → ( 𝑣 ∩ 𝑢 ) = ( ∩ ( 𝑓 “ 𝑡 ) ∩ 𝑢 ) ) | |
| 67 | 66 | eleq1d | ⊢ ( 𝑣 = ∩ ( 𝑓 “ 𝑡 ) → ( ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ↔ ( ∩ ( 𝑓 “ 𝑡 ) ∩ 𝑢 ) ∈ 𝐴 ) ) |
| 68 | ineq2 | ⊢ ( 𝑢 = ( 𝑓 ‘ 𝑡 ) → ( ∩ ( 𝑓 “ 𝑡 ) ∩ 𝑢 ) = ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ) | |
| 69 | 68 | eleq1d | ⊢ ( 𝑢 = ( 𝑓 ‘ 𝑡 ) → ( ( ∩ ( 𝑓 “ 𝑡 ) ∩ 𝑢 ) ∈ 𝐴 ↔ ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 70 | 67 69 | rspc2v | ⊢ ( ( ∩ ( 𝑓 “ 𝑡 ) ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 71 | 70 | ex | ⊢ ( ∩ ( 𝑓 “ 𝑡 ) ∈ 𝐴 → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 72 | 65 71 | syl6 | ⊢ ( ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ∧ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) ) |
| 73 | 72 | com4r | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ∧ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑡 ) ≠ ∅ ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) ) |
| 74 | 73 | exp5c | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( 𝑧 ⊆ 𝐴 → ( ( 𝑓 “ 𝑡 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) ) ) ) |
| 75 | 74 | com14 | ⊢ ( 𝑧 ⊆ 𝐴 → ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ( 𝑓 “ 𝑡 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) ) ) ) |
| 76 | 75 | imp43 | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) ∧ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) → ( ( 𝑓 “ 𝑡 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 77 | 40 76 | biimtrrid | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) ∧ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) → ( ¬ ( 𝑓 “ 𝑡 ) = ∅ → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 78 | inteq | ⊢ ( ( 𝑓 “ 𝑡 ) = ∅ → ∩ ( 𝑓 “ 𝑡 ) = ∩ ∅ ) | |
| 79 | int0 | ⊢ ∩ ∅ = V | |
| 80 | 78 79 | eqtrdi | ⊢ ( ( 𝑓 “ 𝑡 ) = ∅ → ∩ ( 𝑓 “ 𝑡 ) = V ) |
| 81 | 80 | ineq1d | ⊢ ( ( 𝑓 “ 𝑡 ) = ∅ → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) = ( V ∩ ( 𝑓 ‘ 𝑡 ) ) ) |
| 82 | ssv | ⊢ ( 𝑓 ‘ 𝑡 ) ⊆ V | |
| 83 | sseqin2 | ⊢ ( ( 𝑓 ‘ 𝑡 ) ⊆ V ↔ ( V ∩ ( 𝑓 ‘ 𝑡 ) ) = ( 𝑓 ‘ 𝑡 ) ) | |
| 84 | 82 83 | mpbi | ⊢ ( V ∩ ( 𝑓 ‘ 𝑡 ) ) = ( 𝑓 ‘ 𝑡 ) |
| 85 | 81 84 | eqtrdi | ⊢ ( ( 𝑓 “ 𝑡 ) = ∅ → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) = ( 𝑓 ‘ 𝑡 ) ) |
| 86 | 85 | eleq1d | ⊢ ( ( 𝑓 “ 𝑡 ) = ∅ → ( ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 ) ) |
| 87 | 86 | biimprd | ⊢ ( ( 𝑓 “ 𝑡 ) = ∅ → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 88 | 77 87 | pm2.61d2 | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) ∧ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑡 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 89 | 39 88 | mpd | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) ∧ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 90 | fvex | ⊢ ( 𝑓 ‘ 𝑡 ) ∈ V | |
| 91 | 90 | intunsn | ⊢ ∩ ( ( 𝑓 “ 𝑡 ) ∪ { ( 𝑓 ‘ 𝑡 ) } ) = ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) |
| 92 | f1ofn | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → 𝑓 Fn suc 𝑡 ) | |
| 93 | fnsnfv | ⊢ ( ( 𝑓 Fn suc 𝑡 ∧ 𝑡 ∈ suc 𝑡 ) → { ( 𝑓 ‘ 𝑡 ) } = ( 𝑓 “ { 𝑡 } ) ) | |
| 94 | 92 35 93 | sylancl | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → { ( 𝑓 ‘ 𝑡 ) } = ( 𝑓 “ { 𝑡 } ) ) |
| 95 | 94 | uneq2d | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ( 𝑓 “ 𝑡 ) ∪ { ( 𝑓 ‘ 𝑡 ) } ) = ( ( 𝑓 “ 𝑡 ) ∪ ( 𝑓 “ { 𝑡 } ) ) ) |
| 96 | df-suc | ⊢ suc 𝑡 = ( 𝑡 ∪ { 𝑡 } ) | |
| 97 | 96 | imaeq2i | ⊢ ( 𝑓 “ suc 𝑡 ) = ( 𝑓 “ ( 𝑡 ∪ { 𝑡 } ) ) |
| 98 | imaundi | ⊢ ( 𝑓 “ ( 𝑡 ∪ { 𝑡 } ) ) = ( ( 𝑓 “ 𝑡 ) ∪ ( 𝑓 “ { 𝑡 } ) ) | |
| 99 | 97 98 | eqtr2i | ⊢ ( ( 𝑓 “ 𝑡 ) ∪ ( 𝑓 “ { 𝑡 } ) ) = ( 𝑓 “ suc 𝑡 ) |
| 100 | 95 99 | eqtrdi | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ( 𝑓 “ 𝑡 ) ∪ { ( 𝑓 ‘ 𝑡 ) } ) = ( 𝑓 “ suc 𝑡 ) ) |
| 101 | f1ofo | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → 𝑓 : suc 𝑡 –onto→ 𝑧 ) | |
| 102 | foima | ⊢ ( 𝑓 : suc 𝑡 –onto→ 𝑧 → ( 𝑓 “ suc 𝑡 ) = 𝑧 ) | |
| 103 | 101 102 | syl | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( 𝑓 “ suc 𝑡 ) = 𝑧 ) |
| 104 | 100 103 | eqtrd | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ( 𝑓 “ 𝑡 ) ∪ { ( 𝑓 ‘ 𝑡 ) } ) = 𝑧 ) |
| 105 | 104 | inteqd | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ∩ ( ( 𝑓 “ 𝑡 ) ∪ { ( 𝑓 ‘ 𝑡 ) } ) = ∩ 𝑧 ) |
| 106 | 91 105 | eqtr3id | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) = ∩ 𝑧 ) |
| 107 | 106 | eleq1d | ⊢ ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ↔ ∩ 𝑧 ∈ 𝐴 ) ) |
| 108 | 107 | ad2antlr | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) ∧ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) → ( ( ∩ ( 𝑓 “ 𝑡 ) ∩ ( 𝑓 ‘ 𝑡 ) ) ∈ 𝐴 ↔ ∩ 𝑧 ∈ 𝐴 ) ) |
| 109 | 89 108 | mpbid | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 ) ∧ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) → ∩ 𝑧 ∈ 𝐴 ) |
| 110 | 109 | exp43 | ⊢ ( 𝑧 ⊆ 𝐴 → ( 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) ) |
| 111 | 110 | exlimdv | ⊢ ( 𝑧 ⊆ 𝐴 → ( ∃ 𝑓 𝑓 : suc 𝑡 –1-1-onto→ 𝑧 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) ) |
| 112 | 31 111 | biimtrid | ⊢ ( 𝑧 ⊆ 𝐴 → ( suc 𝑡 ≈ 𝑧 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) ) |
| 113 | 112 | imp | ⊢ ( ( 𝑧 ⊆ 𝐴 ∧ suc 𝑡 ≈ 𝑧 ) → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 114 | 113 | adantlr | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ suc 𝑡 ≈ 𝑧 ) → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 115 | 114 | com13 | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ suc 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 116 | 29 30 115 | alrimd | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ suc 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 117 | 116 | a1i | ⊢ ( 𝑡 ∈ ω → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ suc 𝑡 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) ) |
| 118 | 8 12 16 28 117 | finds2 | ⊢ ( 𝑤 ∈ ω → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 119 | sp | ⊢ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) | |
| 120 | 118 119 | syl6 | ⊢ ( 𝑤 ∈ ω → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑤 ≈ 𝑧 ) → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 121 | 120 | exp4a | ⊢ ( 𝑤 ∈ ω → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ( 𝑤 ≈ 𝑧 → ∩ 𝑧 ∈ 𝐴 ) ) ) ) |
| 122 | 121 | com24 | ⊢ ( 𝑤 ∈ ω → ( 𝑤 ≈ 𝑧 → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) ) |
| 123 | 4 122 | sylbird | ⊢ ( 𝑤 ∈ ω → ( 𝑧 ≈ 𝑤 → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) ) |
| 124 | 123 | rexlimiv | ⊢ ( ∃ 𝑤 ∈ ω 𝑧 ≈ 𝑤 → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 125 | 1 124 | sylbi | ⊢ ( 𝑧 ∈ Fin → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 126 | 125 | com13 | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) → ( 𝑧 ∈ Fin → ∩ 𝑧 ∈ 𝐴 ) ) ) |
| 127 | 126 | impd | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ) |
| 128 | 127 | alrimiv | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 → ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ) |
| 129 | zfpair2 | ⊢ { 𝑣 , 𝑢 } ∈ V | |
| 130 | sseq1 | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ( 𝑧 ⊆ 𝐴 ↔ { 𝑣 , 𝑢 } ⊆ 𝐴 ) ) | |
| 131 | neeq1 | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ( 𝑧 ≠ ∅ ↔ { 𝑣 , 𝑢 } ≠ ∅ ) ) | |
| 132 | 130 131 | anbi12d | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ↔ ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ) ) |
| 133 | eleq1 | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ( 𝑧 ∈ Fin ↔ { 𝑣 , 𝑢 } ∈ Fin ) ) | |
| 134 | 132 133 | anbi12d | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) ↔ ( ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ∧ { 𝑣 , 𝑢 } ∈ Fin ) ) ) |
| 135 | inteq | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ∩ 𝑧 = ∩ { 𝑣 , 𝑢 } ) | |
| 136 | 135 | eleq1d | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ( ∩ 𝑧 ∈ 𝐴 ↔ ∩ { 𝑣 , 𝑢 } ∈ 𝐴 ) ) |
| 137 | 134 136 | imbi12d | ⊢ ( 𝑧 = { 𝑣 , 𝑢 } → ( ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ( ( ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ∧ { 𝑣 , 𝑢 } ∈ Fin ) → ∩ { 𝑣 , 𝑢 } ∈ 𝐴 ) ) ) |
| 138 | 129 137 | spcv | ⊢ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) → ( ( ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ∧ { 𝑣 , 𝑢 } ∈ Fin ) → ∩ { 𝑣 , 𝑢 } ∈ 𝐴 ) ) |
| 139 | vex | ⊢ 𝑣 ∈ V | |
| 140 | vex | ⊢ 𝑢 ∈ V | |
| 141 | 139 140 | prss | ⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ↔ { 𝑣 , 𝑢 } ⊆ 𝐴 ) |
| 142 | 139 | prnz | ⊢ { 𝑣 , 𝑢 } ≠ ∅ |
| 143 | 142 | biantru | ⊢ ( { 𝑣 , 𝑢 } ⊆ 𝐴 ↔ ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ) |
| 144 | prfi | ⊢ { 𝑣 , 𝑢 } ∈ Fin | |
| 145 | 144 | biantru | ⊢ ( ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ↔ ( ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ∧ { 𝑣 , 𝑢 } ∈ Fin ) ) |
| 146 | 141 143 145 | 3bitrri | ⊢ ( ( ( { 𝑣 , 𝑢 } ⊆ 𝐴 ∧ { 𝑣 , 𝑢 } ≠ ∅ ) ∧ { 𝑣 , 𝑢 } ∈ Fin ) ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) |
| 147 | 139 140 | intpr | ⊢ ∩ { 𝑣 , 𝑢 } = ( 𝑣 ∩ 𝑢 ) |
| 148 | 147 | eleq1i | ⊢ ( ∩ { 𝑣 , 𝑢 } ∈ 𝐴 ↔ ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) |
| 149 | 138 146 148 | 3imtr3g | ⊢ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) → ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) |
| 150 | 149 | ralrimivv | ⊢ ( ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) → ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) |
| 151 | 128 150 | impbii | ⊢ ( ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ↔ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ) |
| 152 | ineq1 | ⊢ ( 𝑥 = 𝑣 → ( 𝑥 ∩ 𝑦 ) = ( 𝑣 ∩ 𝑦 ) ) | |
| 153 | 152 | eleq1d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ( 𝑣 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 154 | ineq2 | ⊢ ( 𝑦 = 𝑢 → ( 𝑣 ∩ 𝑦 ) = ( 𝑣 ∩ 𝑢 ) ) | |
| 155 | 154 | eleq1d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝑣 ∩ 𝑦 ) ∈ 𝐴 ↔ ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) ) |
| 156 | 153 155 | cbvral2vw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑣 ∈ 𝐴 ∀ 𝑢 ∈ 𝐴 ( 𝑣 ∩ 𝑢 ) ∈ 𝐴 ) |
| 157 | df-3an | ⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin ) ↔ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) ) | |
| 158 | 157 | imbi1i | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ) |
| 159 | 158 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ) ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ) |
| 160 | 151 156 159 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin ) → ∩ 𝑧 ∈ 𝐴 ) ) |