This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of A is in A ". This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002) Use a separate setvar for the right-hand side and avoid ax-pow . (Revised by BTernaryTau, 14-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiint | |- ( A. x e. A A. y e. A ( x i^i y ) e. A <-> A. z ( ( z C_ A /\ z =/= (/) /\ z e. Fin ) -> |^| z e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( z e. Fin <-> E. w e. _om z ~~ w ) |
|
| 2 | nnfi | |- ( w e. _om -> w e. Fin ) |
|
| 3 | ensymfib | |- ( w e. Fin -> ( w ~~ z <-> z ~~ w ) ) |
|
| 4 | 2 3 | syl | |- ( w e. _om -> ( w ~~ z <-> z ~~ w ) ) |
| 5 | breq1 | |- ( w = (/) -> ( w ~~ z <-> (/) ~~ z ) ) |
|
| 6 | 5 | anbi2d | |- ( w = (/) -> ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) <-> ( ( z C_ A /\ z =/= (/) ) /\ (/) ~~ z ) ) ) |
| 7 | 6 | imbi1d | |- ( w = (/) -> ( ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) <-> ( ( ( z C_ A /\ z =/= (/) ) /\ (/) ~~ z ) -> |^| z e. A ) ) ) |
| 8 | 7 | albidv | |- ( w = (/) -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) <-> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ (/) ~~ z ) -> |^| z e. A ) ) ) |
| 9 | breq1 | |- ( w = t -> ( w ~~ z <-> t ~~ z ) ) |
|
| 10 | 9 | anbi2d | |- ( w = t -> ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) <-> ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) ) ) |
| 11 | 10 | imbi1d | |- ( w = t -> ( ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) <-> ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) ) ) |
| 12 | 11 | albidv | |- ( w = t -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) <-> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) ) ) |
| 13 | breq1 | |- ( w = suc t -> ( w ~~ z <-> suc t ~~ z ) ) |
|
| 14 | 13 | anbi2d | |- ( w = suc t -> ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) <-> ( ( z C_ A /\ z =/= (/) ) /\ suc t ~~ z ) ) ) |
| 15 | 14 | imbi1d | |- ( w = suc t -> ( ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) <-> ( ( ( z C_ A /\ z =/= (/) ) /\ suc t ~~ z ) -> |^| z e. A ) ) ) |
| 16 | 15 | albidv | |- ( w = suc t -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) <-> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ suc t ~~ z ) -> |^| z e. A ) ) ) |
| 17 | en0r | |- ( (/) ~~ z <-> z = (/) ) |
|
| 18 | 17 | biimpi | |- ( (/) ~~ z -> z = (/) ) |
| 19 | 18 | anim1i | |- ( ( (/) ~~ z /\ z =/= (/) ) -> ( z = (/) /\ z =/= (/) ) ) |
| 20 | 19 | ancoms | |- ( ( z =/= (/) /\ (/) ~~ z ) -> ( z = (/) /\ z =/= (/) ) ) |
| 21 | 20 | adantll | |- ( ( ( z C_ A /\ z =/= (/) ) /\ (/) ~~ z ) -> ( z = (/) /\ z =/= (/) ) ) |
| 22 | df-ne | |- ( z =/= (/) <-> -. z = (/) ) |
|
| 23 | pm3.24 | |- -. ( z = (/) /\ -. z = (/) ) |
|
| 24 | 23 | pm2.21i | |- ( ( z = (/) /\ -. z = (/) ) -> |^| z e. A ) |
| 25 | 22 24 | sylan2b | |- ( ( z = (/) /\ z =/= (/) ) -> |^| z e. A ) |
| 26 | 21 25 | syl | |- ( ( ( z C_ A /\ z =/= (/) ) /\ (/) ~~ z ) -> |^| z e. A ) |
| 27 | 26 | ax-gen | |- A. z ( ( ( z C_ A /\ z =/= (/) ) /\ (/) ~~ z ) -> |^| z e. A ) |
| 28 | 27 | a1i | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ (/) ~~ z ) -> |^| z e. A ) ) |
| 29 | nfv | |- F/ z A. v e. A A. u e. A ( v i^i u ) e. A |
|
| 30 | nfa1 | |- F/ z A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) |
|
| 31 | bren | |- ( suc t ~~ z <-> E. f f : suc t -1-1-onto-> z ) |
|
| 32 | ssel | |- ( z C_ A -> ( ( f ` t ) e. z -> ( f ` t ) e. A ) ) |
|
| 33 | f1of | |- ( f : suc t -1-1-onto-> z -> f : suc t --> z ) |
|
| 34 | vex | |- t e. _V |
|
| 35 | 34 | sucid | |- t e. suc t |
| 36 | ffvelcdm | |- ( ( f : suc t --> z /\ t e. suc t ) -> ( f ` t ) e. z ) |
|
| 37 | 33 35 36 | sylancl | |- ( f : suc t -1-1-onto-> z -> ( f ` t ) e. z ) |
| 38 | 32 37 | impel | |- ( ( z C_ A /\ f : suc t -1-1-onto-> z ) -> ( f ` t ) e. A ) |
| 39 | 38 | adantr | |- ( ( ( z C_ A /\ f : suc t -1-1-onto-> z ) /\ ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) /\ A. v e. A A. u e. A ( v i^i u ) e. A ) ) -> ( f ` t ) e. A ) |
| 40 | df-ne | |- ( ( f " t ) =/= (/) <-> -. ( f " t ) = (/) ) |
|
| 41 | imassrn | |- ( f " t ) C_ ran f |
|
| 42 | dff1o2 | |- ( f : suc t -1-1-onto-> z <-> ( f Fn suc t /\ Fun `' f /\ ran f = z ) ) |
|
| 43 | 42 | simp3bi | |- ( f : suc t -1-1-onto-> z -> ran f = z ) |
| 44 | 41 43 | sseqtrid | |- ( f : suc t -1-1-onto-> z -> ( f " t ) C_ z ) |
| 45 | sstr2 | |- ( ( f " t ) C_ z -> ( z C_ A -> ( f " t ) C_ A ) ) |
|
| 46 | 44 45 | syl | |- ( f : suc t -1-1-onto-> z -> ( z C_ A -> ( f " t ) C_ A ) ) |
| 47 | 46 | anim1d | |- ( f : suc t -1-1-onto-> z -> ( ( z C_ A /\ ( f " t ) =/= (/) ) -> ( ( f " t ) C_ A /\ ( f " t ) =/= (/) ) ) ) |
| 48 | f1of1 | |- ( f : suc t -1-1-onto-> z -> f : suc t -1-1-> z ) |
|
| 49 | sssucid | |- t C_ suc t |
|
| 50 | vex | |- f e. _V |
|
| 51 | f1imaen3g | |- ( ( f : suc t -1-1-> z /\ t C_ suc t /\ f e. _V ) -> t ~~ ( f " t ) ) |
|
| 52 | 49 50 51 | mp3an23 | |- ( f : suc t -1-1-> z -> t ~~ ( f " t ) ) |
| 53 | 48 52 | syl | |- ( f : suc t -1-1-onto-> z -> t ~~ ( f " t ) ) |
| 54 | 47 53 | jctird | |- ( f : suc t -1-1-onto-> z -> ( ( z C_ A /\ ( f " t ) =/= (/) ) -> ( ( ( f " t ) C_ A /\ ( f " t ) =/= (/) ) /\ t ~~ ( f " t ) ) ) ) |
| 55 | 50 | imaex | |- ( f " t ) e. _V |
| 56 | sseq1 | |- ( z = ( f " t ) -> ( z C_ A <-> ( f " t ) C_ A ) ) |
|
| 57 | neeq1 | |- ( z = ( f " t ) -> ( z =/= (/) <-> ( f " t ) =/= (/) ) ) |
|
| 58 | 56 57 | anbi12d | |- ( z = ( f " t ) -> ( ( z C_ A /\ z =/= (/) ) <-> ( ( f " t ) C_ A /\ ( f " t ) =/= (/) ) ) ) |
| 59 | breq2 | |- ( z = ( f " t ) -> ( t ~~ z <-> t ~~ ( f " t ) ) ) |
|
| 60 | 58 59 | anbi12d | |- ( z = ( f " t ) -> ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) <-> ( ( ( f " t ) C_ A /\ ( f " t ) =/= (/) ) /\ t ~~ ( f " t ) ) ) ) |
| 61 | inteq | |- ( z = ( f " t ) -> |^| z = |^| ( f " t ) ) |
|
| 62 | 61 | eleq1d | |- ( z = ( f " t ) -> ( |^| z e. A <-> |^| ( f " t ) e. A ) ) |
| 63 | 60 62 | imbi12d | |- ( z = ( f " t ) -> ( ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) <-> ( ( ( ( f " t ) C_ A /\ ( f " t ) =/= (/) ) /\ t ~~ ( f " t ) ) -> |^| ( f " t ) e. A ) ) ) |
| 64 | 55 63 | spcv | |- ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( ( ( ( f " t ) C_ A /\ ( f " t ) =/= (/) ) /\ t ~~ ( f " t ) ) -> |^| ( f " t ) e. A ) ) |
| 65 | 54 64 | sylan9 | |- ( ( f : suc t -1-1-onto-> z /\ A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) ) -> ( ( z C_ A /\ ( f " t ) =/= (/) ) -> |^| ( f " t ) e. A ) ) |
| 66 | ineq1 | |- ( v = |^| ( f " t ) -> ( v i^i u ) = ( |^| ( f " t ) i^i u ) ) |
|
| 67 | 66 | eleq1d | |- ( v = |^| ( f " t ) -> ( ( v i^i u ) e. A <-> ( |^| ( f " t ) i^i u ) e. A ) ) |
| 68 | ineq2 | |- ( u = ( f ` t ) -> ( |^| ( f " t ) i^i u ) = ( |^| ( f " t ) i^i ( f ` t ) ) ) |
|
| 69 | 68 | eleq1d | |- ( u = ( f ` t ) -> ( ( |^| ( f " t ) i^i u ) e. A <-> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) |
| 70 | 67 69 | rspc2v | |- ( ( |^| ( f " t ) e. A /\ ( f ` t ) e. A ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) |
| 71 | 70 | ex | |- ( |^| ( f " t ) e. A -> ( ( f ` t ) e. A -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) ) |
| 72 | 65 71 | syl6 | |- ( ( f : suc t -1-1-onto-> z /\ A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) ) -> ( ( z C_ A /\ ( f " t ) =/= (/) ) -> ( ( f ` t ) e. A -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) ) ) |
| 73 | 72 | com4r | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( ( f : suc t -1-1-onto-> z /\ A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) ) -> ( ( z C_ A /\ ( f " t ) =/= (/) ) -> ( ( f ` t ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) ) ) |
| 74 | 73 | exp5c | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( f : suc t -1-1-onto-> z -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( z C_ A -> ( ( f " t ) =/= (/) -> ( ( f ` t ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) ) ) ) ) |
| 75 | 74 | com14 | |- ( z C_ A -> ( f : suc t -1-1-onto-> z -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( ( f " t ) =/= (/) -> ( ( f ` t ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) ) ) ) ) |
| 76 | 75 | imp43 | |- ( ( ( z C_ A /\ f : suc t -1-1-onto-> z ) /\ ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) /\ A. v e. A A. u e. A ( v i^i u ) e. A ) ) -> ( ( f " t ) =/= (/) -> ( ( f ` t ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) ) |
| 77 | 40 76 | biimtrrid | |- ( ( ( z C_ A /\ f : suc t -1-1-onto-> z ) /\ ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) /\ A. v e. A A. u e. A ( v i^i u ) e. A ) ) -> ( -. ( f " t ) = (/) -> ( ( f ` t ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) ) |
| 78 | inteq | |- ( ( f " t ) = (/) -> |^| ( f " t ) = |^| (/) ) |
|
| 79 | int0 | |- |^| (/) = _V |
|
| 80 | 78 79 | eqtrdi | |- ( ( f " t ) = (/) -> |^| ( f " t ) = _V ) |
| 81 | 80 | ineq1d | |- ( ( f " t ) = (/) -> ( |^| ( f " t ) i^i ( f ` t ) ) = ( _V i^i ( f ` t ) ) ) |
| 82 | ssv | |- ( f ` t ) C_ _V |
|
| 83 | sseqin2 | |- ( ( f ` t ) C_ _V <-> ( _V i^i ( f ` t ) ) = ( f ` t ) ) |
|
| 84 | 82 83 | mpbi | |- ( _V i^i ( f ` t ) ) = ( f ` t ) |
| 85 | 81 84 | eqtrdi | |- ( ( f " t ) = (/) -> ( |^| ( f " t ) i^i ( f ` t ) ) = ( f ` t ) ) |
| 86 | 85 | eleq1d | |- ( ( f " t ) = (/) -> ( ( |^| ( f " t ) i^i ( f ` t ) ) e. A <-> ( f ` t ) e. A ) ) |
| 87 | 86 | biimprd | |- ( ( f " t ) = (/) -> ( ( f ` t ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) |
| 88 | 77 87 | pm2.61d2 | |- ( ( ( z C_ A /\ f : suc t -1-1-onto-> z ) /\ ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) /\ A. v e. A A. u e. A ( v i^i u ) e. A ) ) -> ( ( f ` t ) e. A -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) ) |
| 89 | 39 88 | mpd | |- ( ( ( z C_ A /\ f : suc t -1-1-onto-> z ) /\ ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) /\ A. v e. A A. u e. A ( v i^i u ) e. A ) ) -> ( |^| ( f " t ) i^i ( f ` t ) ) e. A ) |
| 90 | fvex | |- ( f ` t ) e. _V |
|
| 91 | 90 | intunsn | |- |^| ( ( f " t ) u. { ( f ` t ) } ) = ( |^| ( f " t ) i^i ( f ` t ) ) |
| 92 | f1ofn | |- ( f : suc t -1-1-onto-> z -> f Fn suc t ) |
|
| 93 | fnsnfv | |- ( ( f Fn suc t /\ t e. suc t ) -> { ( f ` t ) } = ( f " { t } ) ) |
|
| 94 | 92 35 93 | sylancl | |- ( f : suc t -1-1-onto-> z -> { ( f ` t ) } = ( f " { t } ) ) |
| 95 | 94 | uneq2d | |- ( f : suc t -1-1-onto-> z -> ( ( f " t ) u. { ( f ` t ) } ) = ( ( f " t ) u. ( f " { t } ) ) ) |
| 96 | df-suc | |- suc t = ( t u. { t } ) |
|
| 97 | 96 | imaeq2i | |- ( f " suc t ) = ( f " ( t u. { t } ) ) |
| 98 | imaundi | |- ( f " ( t u. { t } ) ) = ( ( f " t ) u. ( f " { t } ) ) |
|
| 99 | 97 98 | eqtr2i | |- ( ( f " t ) u. ( f " { t } ) ) = ( f " suc t ) |
| 100 | 95 99 | eqtrdi | |- ( f : suc t -1-1-onto-> z -> ( ( f " t ) u. { ( f ` t ) } ) = ( f " suc t ) ) |
| 101 | f1ofo | |- ( f : suc t -1-1-onto-> z -> f : suc t -onto-> z ) |
|
| 102 | foima | |- ( f : suc t -onto-> z -> ( f " suc t ) = z ) |
|
| 103 | 101 102 | syl | |- ( f : suc t -1-1-onto-> z -> ( f " suc t ) = z ) |
| 104 | 100 103 | eqtrd | |- ( f : suc t -1-1-onto-> z -> ( ( f " t ) u. { ( f ` t ) } ) = z ) |
| 105 | 104 | inteqd | |- ( f : suc t -1-1-onto-> z -> |^| ( ( f " t ) u. { ( f ` t ) } ) = |^| z ) |
| 106 | 91 105 | eqtr3id | |- ( f : suc t -1-1-onto-> z -> ( |^| ( f " t ) i^i ( f ` t ) ) = |^| z ) |
| 107 | 106 | eleq1d | |- ( f : suc t -1-1-onto-> z -> ( ( |^| ( f " t ) i^i ( f ` t ) ) e. A <-> |^| z e. A ) ) |
| 108 | 107 | ad2antlr | |- ( ( ( z C_ A /\ f : suc t -1-1-onto-> z ) /\ ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) /\ A. v e. A A. u e. A ( v i^i u ) e. A ) ) -> ( ( |^| ( f " t ) i^i ( f ` t ) ) e. A <-> |^| z e. A ) ) |
| 109 | 89 108 | mpbid | |- ( ( ( z C_ A /\ f : suc t -1-1-onto-> z ) /\ ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) /\ A. v e. A A. u e. A ( v i^i u ) e. A ) ) -> |^| z e. A ) |
| 110 | 109 | exp43 | |- ( z C_ A -> ( f : suc t -1-1-onto-> z -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) ) |
| 111 | 110 | exlimdv | |- ( z C_ A -> ( E. f f : suc t -1-1-onto-> z -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) ) |
| 112 | 31 111 | biimtrid | |- ( z C_ A -> ( suc t ~~ z -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) ) |
| 113 | 112 | imp | |- ( ( z C_ A /\ suc t ~~ z ) -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) |
| 114 | 113 | adantlr | |- ( ( ( z C_ A /\ z =/= (/) ) /\ suc t ~~ z ) -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) |
| 115 | 114 | com13 | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> ( ( ( z C_ A /\ z =/= (/) ) /\ suc t ~~ z ) -> |^| z e. A ) ) ) |
| 116 | 29 30 115 | alrimd | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ suc t ~~ z ) -> |^| z e. A ) ) ) |
| 117 | 116 | a1i | |- ( t e. _om -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ t ~~ z ) -> |^| z e. A ) -> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ suc t ~~ z ) -> |^| z e. A ) ) ) ) |
| 118 | 8 12 16 28 117 | finds2 | |- ( w e. _om -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) ) ) |
| 119 | sp | |- ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) -> ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) ) |
|
| 120 | 118 119 | syl6 | |- ( w e. _om -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( ( ( z C_ A /\ z =/= (/) ) /\ w ~~ z ) -> |^| z e. A ) ) ) |
| 121 | 120 | exp4a | |- ( w e. _om -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( ( z C_ A /\ z =/= (/) ) -> ( w ~~ z -> |^| z e. A ) ) ) ) |
| 122 | 121 | com24 | |- ( w e. _om -> ( w ~~ z -> ( ( z C_ A /\ z =/= (/) ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) ) |
| 123 | 4 122 | sylbird | |- ( w e. _om -> ( z ~~ w -> ( ( z C_ A /\ z =/= (/) ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) ) |
| 124 | 123 | rexlimiv | |- ( E. w e. _om z ~~ w -> ( ( z C_ A /\ z =/= (/) ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) |
| 125 | 1 124 | sylbi | |- ( z e. Fin -> ( ( z C_ A /\ z =/= (/) ) -> ( A. v e. A A. u e. A ( v i^i u ) e. A -> |^| z e. A ) ) ) |
| 126 | 125 | com13 | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( ( z C_ A /\ z =/= (/) ) -> ( z e. Fin -> |^| z e. A ) ) ) |
| 127 | 126 | impd | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) ) |
| 128 | 127 | alrimiv | |- ( A. v e. A A. u e. A ( v i^i u ) e. A -> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) ) |
| 129 | zfpair2 | |- { v , u } e. _V |
|
| 130 | sseq1 | |- ( z = { v , u } -> ( z C_ A <-> { v , u } C_ A ) ) |
|
| 131 | neeq1 | |- ( z = { v , u } -> ( z =/= (/) <-> { v , u } =/= (/) ) ) |
|
| 132 | 130 131 | anbi12d | |- ( z = { v , u } -> ( ( z C_ A /\ z =/= (/) ) <-> ( { v , u } C_ A /\ { v , u } =/= (/) ) ) ) |
| 133 | eleq1 | |- ( z = { v , u } -> ( z e. Fin <-> { v , u } e. Fin ) ) |
|
| 134 | 132 133 | anbi12d | |- ( z = { v , u } -> ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) <-> ( ( { v , u } C_ A /\ { v , u } =/= (/) ) /\ { v , u } e. Fin ) ) ) |
| 135 | inteq | |- ( z = { v , u } -> |^| z = |^| { v , u } ) |
|
| 136 | 135 | eleq1d | |- ( z = { v , u } -> ( |^| z e. A <-> |^| { v , u } e. A ) ) |
| 137 | 134 136 | imbi12d | |- ( z = { v , u } -> ( ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) <-> ( ( ( { v , u } C_ A /\ { v , u } =/= (/) ) /\ { v , u } e. Fin ) -> |^| { v , u } e. A ) ) ) |
| 138 | 129 137 | spcv | |- ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) -> ( ( ( { v , u } C_ A /\ { v , u } =/= (/) ) /\ { v , u } e. Fin ) -> |^| { v , u } e. A ) ) |
| 139 | vex | |- v e. _V |
|
| 140 | vex | |- u e. _V |
|
| 141 | 139 140 | prss | |- ( ( v e. A /\ u e. A ) <-> { v , u } C_ A ) |
| 142 | 139 | prnz | |- { v , u } =/= (/) |
| 143 | 142 | biantru | |- ( { v , u } C_ A <-> ( { v , u } C_ A /\ { v , u } =/= (/) ) ) |
| 144 | prfi | |- { v , u } e. Fin |
|
| 145 | 144 | biantru | |- ( ( { v , u } C_ A /\ { v , u } =/= (/) ) <-> ( ( { v , u } C_ A /\ { v , u } =/= (/) ) /\ { v , u } e. Fin ) ) |
| 146 | 141 143 145 | 3bitrri | |- ( ( ( { v , u } C_ A /\ { v , u } =/= (/) ) /\ { v , u } e. Fin ) <-> ( v e. A /\ u e. A ) ) |
| 147 | 139 140 | intpr | |- |^| { v , u } = ( v i^i u ) |
| 148 | 147 | eleq1i | |- ( |^| { v , u } e. A <-> ( v i^i u ) e. A ) |
| 149 | 138 146 148 | 3imtr3g | |- ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) -> ( ( v e. A /\ u e. A ) -> ( v i^i u ) e. A ) ) |
| 150 | 149 | ralrimivv | |- ( A. z ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) -> A. v e. A A. u e. A ( v i^i u ) e. A ) |
| 151 | 128 150 | impbii | |- ( A. v e. A A. u e. A ( v i^i u ) e. A <-> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) ) |
| 152 | ineq1 | |- ( x = v -> ( x i^i y ) = ( v i^i y ) ) |
|
| 153 | 152 | eleq1d | |- ( x = v -> ( ( x i^i y ) e. A <-> ( v i^i y ) e. A ) ) |
| 154 | ineq2 | |- ( y = u -> ( v i^i y ) = ( v i^i u ) ) |
|
| 155 | 154 | eleq1d | |- ( y = u -> ( ( v i^i y ) e. A <-> ( v i^i u ) e. A ) ) |
| 156 | 153 155 | cbvral2vw | |- ( A. x e. A A. y e. A ( x i^i y ) e. A <-> A. v e. A A. u e. A ( v i^i u ) e. A ) |
| 157 | df-3an | |- ( ( z C_ A /\ z =/= (/) /\ z e. Fin ) <-> ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) ) |
|
| 158 | 157 | imbi1i | |- ( ( ( z C_ A /\ z =/= (/) /\ z e. Fin ) -> |^| z e. A ) <-> ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) ) |
| 159 | 158 | albii | |- ( A. z ( ( z C_ A /\ z =/= (/) /\ z e. Fin ) -> |^| z e. A ) <-> A. z ( ( ( z C_ A /\ z =/= (/) ) /\ z e. Fin ) -> |^| z e. A ) ) |
| 160 | 151 156 159 | 3bitr4i | |- ( A. x e. A A. y e. A ( x i^i y ) e. A <-> A. z ( ( z C_ A /\ z =/= (/) /\ z e. Fin ) -> |^| z e. A ) ) |