This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en0r | ⊢ ( ∅ ≈ 𝐴 ↔ 𝐴 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv | ⊢ ( ∅ ≈ 𝐴 → ( ∅ ∈ V ∧ 𝐴 ∈ V ) ) | |
| 2 | breng | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( ∅ ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 ) ) | |
| 3 | 1 2 | syl | ⊢ ( ∅ ≈ 𝐴 → ( ∅ ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 ) ) |
| 4 | 3 | ibi | ⊢ ( ∅ ≈ 𝐴 → ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 ) |
| 5 | f1o00 | ⊢ ( 𝑓 : ∅ –1-1-onto→ 𝐴 ↔ ( 𝑓 = ∅ ∧ 𝐴 = ∅ ) ) | |
| 6 | 5 | simprbi | ⊢ ( 𝑓 : ∅ –1-1-onto→ 𝐴 → 𝐴 = ∅ ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 → 𝐴 = ∅ ) |
| 8 | 4 7 | syl | ⊢ ( ∅ ≈ 𝐴 → 𝐴 = ∅ ) |
| 9 | 0ex | ⊢ ∅ ∈ V | |
| 10 | f1oeq1 | ⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) | |
| 11 | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | |
| 12 | 9 10 11 | ceqsexv2d | ⊢ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ |
| 13 | breng | ⊢ ( ( ∅ ∈ V ∧ ∅ ∈ V ) → ( ∅ ≈ ∅ ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ ) ) | |
| 14 | 9 9 13 | mp2an | ⊢ ( ∅ ≈ ∅ ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ ) |
| 15 | 12 14 | mpbir | ⊢ ∅ ≈ ∅ |
| 16 | breq2 | ⊢ ( 𝐴 = ∅ → ( ∅ ≈ 𝐴 ↔ ∅ ≈ ∅ ) ) | |
| 17 | 15 16 | mpbiri | ⊢ ( 𝐴 = ∅ → ∅ ≈ 𝐴 ) |
| 18 | 8 17 | impbii | ⊢ ( ∅ ≈ 𝐴 ↔ 𝐴 = ∅ ) |