This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr . See zfpair for its derivation from the other axioms. (Contributed by NM, 14-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfpair2 | ⊢ { 𝑥 , 𝑦 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pr | ⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) → 𝑤 ∈ 𝑧 ) | |
| 2 | 1 | sepexi | ⊢ ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) |
| 3 | dfcleq | ⊢ ( 𝑧 = { 𝑥 , 𝑦 } ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) ) | |
| 4 | vex | ⊢ 𝑤 ∈ V | |
| 5 | 4 | elpr | ⊢ ( 𝑤 ∈ { 𝑥 , 𝑦 } ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) |
| 6 | 5 | bibi2i | ⊢ ( ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) ↔ ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ 𝑤 ∈ { 𝑥 , 𝑦 } ) ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) ) |
| 8 | 3 7 | bitri | ⊢ ( 𝑧 = { 𝑥 , 𝑦 } ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑧 𝑧 = { 𝑥 , 𝑦 } ↔ ∃ 𝑧 ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 = 𝑥 ∨ 𝑤 = 𝑦 ) ) ) |
| 10 | 2 9 | mpbir | ⊢ ∃ 𝑧 𝑧 = { 𝑥 , 𝑦 } |
| 11 | 10 | issetri | ⊢ { 𝑥 , 𝑦 } ∈ V |