This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a pair is the intersection of its members. Theorem 71 of Suppes p. 42. (Contributed by NM, 14-Oct-1999) Prove from intprg . (Revised by BJ, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | intpr.1 | ⊢ 𝐴 ∈ V | |
| intpr.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | intpr | ⊢ ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intpr.1 | ⊢ 𝐴 ∈ V | |
| 2 | intpr.2 | ⊢ 𝐵 ∈ V | |
| 3 | intprg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) |