This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite domain is a division ring. Note that Wedderburn's little theorem (not proved) states that finite division rings are fields. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fidomndrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | fidomndrng | ⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidomndrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | domnring | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → 𝑅 ∈ Ring ) |
| 4 | domnnzr | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → 𝑅 ∈ NzRing ) |
| 6 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 8 | 6 7 | nzrnz | ⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 9 | 5 8 | syl | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 10 | 9 | neneqd | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ¬ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
| 11 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 12 | 11 7 6 | 0unit | ⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 13 | 3 12 | syl | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 14 | 10 13 | mtbird | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 15 | disjsn | ⊢ ( ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ↔ ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ) |
| 17 | 1 11 | unitss | ⊢ ( Unit ‘ 𝑅 ) ⊆ 𝐵 |
| 18 | reldisj | ⊢ ( ( Unit ‘ 𝑅 ) ⊆ 𝐵 → ( ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ↔ ( Unit ‘ 𝑅 ) ⊆ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( ( Unit ‘ 𝑅 ) ∩ { ( 0g ‘ 𝑅 ) } ) = ∅ ↔ ( Unit ‘ 𝑅 ) ⊆ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 20 | 16 19 | sylib | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( Unit ‘ 𝑅 ) ⊆ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 21 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 22 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 23 | simplr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑅 ∈ Domn ) | |
| 24 | simpll | ⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝐵 ∈ Fin ) | |
| 25 | simpr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) | |
| 26 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ) | |
| 27 | 1 7 6 21 22 23 24 25 26 | fidomndrnglem | ⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 28 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 29 | 28 1 | opprbas | ⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 30 | 28 7 | oppr0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
| 31 | 28 6 | oppr1 | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
| 32 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 33 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 34 | 28 | opprdomn | ⊢ ( 𝑅 ∈ Domn → ( oppr ‘ 𝑅 ) ∈ Domn ) |
| 35 | 23 34 | syl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → ( oppr ‘ 𝑅 ) ∈ Domn ) |
| 36 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) | |
| 37 | 29 30 31 32 33 35 24 25 36 | fidomndrnglem | ⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 38 | 11 6 21 28 32 | isunit | ⊢ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 39 | 27 37 38 | sylanbrc | ⊢ ( ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) ∧ 𝑥 ∈ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
| 40 | 20 39 | eqelssd | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 41 | 1 11 7 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 42 | 3 40 41 | sylanbrc | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝑅 ∈ Domn ) → 𝑅 ∈ DivRing ) |
| 43 | 42 | ex | ⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ Domn → 𝑅 ∈ DivRing ) ) |
| 44 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
| 45 | 43 44 | impbid1 | ⊢ ( 𝐵 ∈ Fin → ( 𝑅 ∈ Domn ↔ 𝑅 ∈ DivRing ) ) |