This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The additive identity is a unit if and only if 1 = 0 , i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0unit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 0unit.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| 0unit.3 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 0unit | ⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0unit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | 0unit.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 0unit.3 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 6 | 1 4 5 3 | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → ( 0 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 0 ) ) = 1 ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | 1 4 7 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 9 | 7 5 2 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( invr ‘ 𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 0 ) ) = 0 ) |
| 10 | 8 9 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → ( 0 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 0 ) ) = 0 ) |
| 11 | 6 10 | eqtr3d | ⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ) → 1 = 0 ) |
| 12 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 1 = 0 ) | |
| 13 | 1 3 | 1unit | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 1 ∈ 𝑈 ) |
| 15 | 12 14 | eqeltrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 = 0 ) → 0 ∈ 𝑈 ) |
| 16 | 11 15 | impbida | ⊢ ( 𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 ) ) |