This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fidomndrng . (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fidomndrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| fidomndrng.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| fidomndrng.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| fidomndrng.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| fidomndrng.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| fidomndrng.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | ||
| fidomndrng.x | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| fidomndrng.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ∖ { 0 } ) ) | ||
| fidomndrng.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) | ||
| Assertion | fidomndrnglem | ⊢ ( 𝜑 → 𝐴 ∥ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidomndrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | fidomndrng.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | fidomndrng.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | fidomndrng.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 5 | fidomndrng.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 6 | fidomndrng.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | |
| 7 | fidomndrng.x | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 8 | fidomndrng.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ∖ { 0 } ) ) | |
| 9 | fidomndrng.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) | |
| 10 | 8 | eldifad | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 11 | eldifsni | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 0 } ) → 𝐴 ≠ 0 ) | |
| 12 | 8 11 | syl | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → 𝐴 ≠ 0 ) |
| 14 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) | |
| 15 | ovex | ⊢ ( 𝑦 · 𝐴 ) ∈ V | |
| 16 | 14 9 15 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 𝐴 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 𝐴 ) ) |
| 18 | 17 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑅 ∈ Domn ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 21 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
| 22 | 1 5 2 | domneq0 | ⊢ ( ( 𝑅 ∈ Domn ∧ 𝑦 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) ) |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 · 𝐴 ) = 0 ↔ ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) ) |
| 24 | 18 23 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 ↔ ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) ) |
| 25 | 24 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → ( 𝑦 = 0 ∨ 𝐴 = 0 ) ) |
| 26 | 25 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → ( ¬ 𝑦 = 0 → 𝐴 = 0 ) ) |
| 27 | 26 | necon1ad | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → ( 𝐴 ≠ 0 → 𝑦 = 0 ) ) |
| 28 | 13 27 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑦 ) = 0 ) → 𝑦 = 0 ) |
| 29 | 28 | ex | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) |
| 31 | domnring | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) | |
| 32 | 6 31 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 33 | 1 5 | ringrghm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 34 | 32 10 33 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 35 | 9 34 | eqeltrid | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 36 | 1 1 2 2 | ghmf1 | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑅 ) → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 38 | 30 37 | mpbird | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐵 ) |
| 39 | enreffi | ⊢ ( 𝐵 ∈ Fin → 𝐵 ≈ 𝐵 ) | |
| 40 | 7 39 | syl | ⊢ ( 𝜑 → 𝐵 ≈ 𝐵 ) |
| 41 | f1finf1o | ⊢ ( ( 𝐵 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ) | |
| 42 | 40 7 41 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ 𝐵 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ) |
| 43 | 38 42 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| 44 | f1ocnv | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) | |
| 45 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) | |
| 46 | 43 44 45 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 ⟶ 𝐵 ) |
| 47 | 1 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 48 | 32 47 | syl | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 49 | 46 48 | ffvelcdmd | ⊢ ( 𝜑 → ( ◡ 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| 50 | 1 4 5 | dvdsrmul | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 1 ) ∈ 𝐵 ) → 𝐴 ∥ ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 51 | 10 49 50 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∥ ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 52 | oveq1 | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 1 ) → ( 𝑦 · 𝐴 ) = ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) | |
| 53 | 14 | cbvmptv | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 · 𝐴 ) ) |
| 54 | 9 53 | eqtri | ⊢ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑦 · 𝐴 ) ) |
| 55 | ovex | ⊢ ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ∈ V | |
| 56 | 52 54 55 | fvmpt | ⊢ ( ( ◡ 𝐹 ‘ 1 ) ∈ 𝐵 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 57 | 49 56 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) ) |
| 58 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ 1 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = 1 ) | |
| 59 | 43 48 58 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 1 ) ) = 1 ) |
| 60 | 57 59 | eqtr3d | ⊢ ( 𝜑 → ( ( ◡ 𝐹 ‘ 1 ) · 𝐴 ) = 1 ) |
| 61 | 51 60 | breqtrd | ⊢ ( 𝜑 → 𝐴 ∥ 1 ) |