This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite domain is a division ring. Note that Wedderburn's little theorem (not proved) states that finite division rings are fields. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fidomndrng.b | |- B = ( Base ` R ) |
|
| Assertion | fidomndrng | |- ( B e. Fin -> ( R e. Domn <-> R e. DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidomndrng.b | |- B = ( Base ` R ) |
|
| 2 | domnring | |- ( R e. Domn -> R e. Ring ) |
|
| 3 | 2 | adantl | |- ( ( B e. Fin /\ R e. Domn ) -> R e. Ring ) |
| 4 | domnnzr | |- ( R e. Domn -> R e. NzRing ) |
|
| 5 | 4 | adantl | |- ( ( B e. Fin /\ R e. Domn ) -> R e. NzRing ) |
| 6 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 7 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 8 | 6 7 | nzrnz | |- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 9 | 5 8 | syl | |- ( ( B e. Fin /\ R e. Domn ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 10 | 9 | neneqd | |- ( ( B e. Fin /\ R e. Domn ) -> -. ( 1r ` R ) = ( 0g ` R ) ) |
| 11 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 12 | 11 7 6 | 0unit | |- ( R e. Ring -> ( ( 0g ` R ) e. ( Unit ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
| 13 | 3 12 | syl | |- ( ( B e. Fin /\ R e. Domn ) -> ( ( 0g ` R ) e. ( Unit ` R ) <-> ( 1r ` R ) = ( 0g ` R ) ) ) |
| 14 | 10 13 | mtbird | |- ( ( B e. Fin /\ R e. Domn ) -> -. ( 0g ` R ) e. ( Unit ` R ) ) |
| 15 | disjsn | |- ( ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) <-> -. ( 0g ` R ) e. ( Unit ` R ) ) |
|
| 16 | 14 15 | sylibr | |- ( ( B e. Fin /\ R e. Domn ) -> ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) ) |
| 17 | 1 11 | unitss | |- ( Unit ` R ) C_ B |
| 18 | reldisj | |- ( ( Unit ` R ) C_ B -> ( ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) <-> ( Unit ` R ) C_ ( B \ { ( 0g ` R ) } ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( ( ( Unit ` R ) i^i { ( 0g ` R ) } ) = (/) <-> ( Unit ` R ) C_ ( B \ { ( 0g ` R ) } ) ) |
| 20 | 16 19 | sylib | |- ( ( B e. Fin /\ R e. Domn ) -> ( Unit ` R ) C_ ( B \ { ( 0g ` R ) } ) ) |
| 21 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 22 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 23 | simplr | |- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> R e. Domn ) |
|
| 24 | simpll | |- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> B e. Fin ) |
|
| 25 | simpr | |- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x e. ( B \ { ( 0g ` R ) } ) ) |
|
| 26 | eqid | |- ( y e. B |-> ( y ( .r ` R ) x ) ) = ( y e. B |-> ( y ( .r ` R ) x ) ) |
|
| 27 | 1 7 6 21 22 23 24 25 26 | fidomndrnglem | |- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x ( ||r ` R ) ( 1r ` R ) ) |
| 28 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 29 | 28 1 | opprbas | |- B = ( Base ` ( oppR ` R ) ) |
| 30 | 28 7 | oppr0 | |- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
| 31 | 28 6 | oppr1 | |- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
| 32 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 33 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 34 | 28 | opprdomn | |- ( R e. Domn -> ( oppR ` R ) e. Domn ) |
| 35 | 23 34 | syl | |- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> ( oppR ` R ) e. Domn ) |
| 36 | eqid | |- ( y e. B |-> ( y ( .r ` ( oppR ` R ) ) x ) ) = ( y e. B |-> ( y ( .r ` ( oppR ` R ) ) x ) ) |
|
| 37 | 29 30 31 32 33 35 24 25 36 | fidomndrnglem | |- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 38 | 11 6 21 28 32 | isunit | |- ( x e. ( Unit ` R ) <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 39 | 27 37 38 | sylanbrc | |- ( ( ( B e. Fin /\ R e. Domn ) /\ x e. ( B \ { ( 0g ` R ) } ) ) -> x e. ( Unit ` R ) ) |
| 40 | 20 39 | eqelssd | |- ( ( B e. Fin /\ R e. Domn ) -> ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) ) |
| 41 | 1 11 7 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) ) ) |
| 42 | 3 40 41 | sylanbrc | |- ( ( B e. Fin /\ R e. Domn ) -> R e. DivRing ) |
| 43 | 42 | ex | |- ( B e. Fin -> ( R e. Domn -> R e. DivRing ) ) |
| 44 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
| 45 | 43 44 | impbid1 | |- ( B e. Fin -> ( R e. Domn <-> R e. DivRing ) ) |