This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring is a domain. (Contributed by Mario Carneiro, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngnzr | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 5 | 2 3 4 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 7 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 8 | eqid | ⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) | |
| 9 | 8 3 | unitrrg | ⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 11 | 6 10 | eqsstrrd | ⊢ ( 𝑅 ∈ DivRing → ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ⊆ ( RLReg ‘ 𝑅 ) ) |
| 12 | 2 8 4 | isdomn2 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ⊆ ( RLReg ‘ 𝑅 ) ) ) |
| 13 | 1 11 12 | sylanbrc | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) |