This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalization of Fermat's little theorem in a commutative ring F of prime characteristic. See fermltl . (Contributed by Thierry Arnoux, 9-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fermltlchr.z | ⊢ 𝑃 = ( chr ‘ 𝐹 ) | |
| fermltlchr.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| fermltlchr.p | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐹 ) ) | ||
| fermltlchr.1 | ⊢ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) | ||
| fermltlchr.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| fermltlchr.3 | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) | ||
| fermltlchr.4 | ⊢ ( 𝜑 → 𝐹 ∈ CRing ) | ||
| Assertion | fermltlchr | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fermltlchr.z | ⊢ 𝑃 = ( chr ‘ 𝐹 ) | |
| 2 | fermltlchr.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 3 | fermltlchr.p | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝐹 ) ) | |
| 4 | fermltlchr.1 | ⊢ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) | |
| 5 | fermltlchr.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 6 | fermltlchr.3 | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) | |
| 7 | fermltlchr.4 | ⊢ ( 𝜑 → 𝐹 ∈ CRing ) | |
| 8 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 9 | 8 | nnnn0d | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝑃 ∈ ℕ0 ) |
| 12 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝐸 ∈ ℤ ) |
| 13 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) | |
| 14 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 15 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 16 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 17 | 15 16 | mgpbas | ⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 18 | 14 17 | sseqtri | ⊢ ℤ ⊆ ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 19 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) | |
| 20 | eqid | ⊢ ( invg ‘ ( mulGrp ‘ ℂfld ) ) = ( invg ‘ ( mulGrp ‘ ℂfld ) ) | |
| 21 | cnring | ⊢ ℂfld ∈ Ring | |
| 22 | 15 | ringmgp | ⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 23 | 21 22 | ax-mp | ⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 24 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 25 | 15 24 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 26 | 1z | ⊢ 1 ∈ ℤ | |
| 27 | 25 26 | eqeltrri | ⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) ∈ ℤ |
| 28 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) | |
| 29 | 13 17 28 | ress0g | ⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) ) |
| 30 | 23 27 14 29 | mp3an | ⊢ ( 0g ‘ ( mulGrp ‘ ℂfld ) ) = ( 0g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
| 31 | 13 18 19 20 30 | ressmulgnn0 | ⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝐸 ∈ ℤ ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) = ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) ) |
| 32 | 11 12 31 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) = ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) ) |
| 33 | 12 | zcnd | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝐸 ∈ ℂ ) |
| 34 | cnfldexp | ⊢ ( ( 𝐸 ∈ ℂ ∧ 𝑃 ∈ ℕ0 ) → ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) = ( 𝐸 ↑ 𝑃 ) ) | |
| 35 | 33 11 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐸 ) = ( 𝐸 ↑ 𝑃 ) ) |
| 36 | 32 35 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) = ( 𝐸 ↑ 𝑃 ) ) |
| 37 | 36 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ) |
| 38 | 7 | crngringd | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 39 | eqid | ⊢ ( ℤRHom ‘ 𝐹 ) = ( ℤRHom ‘ 𝐹 ) | |
| 40 | 39 | zrhrhm | ⊢ ( 𝐹 ∈ Ring → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) ) |
| 41 | 38 40 | syl | ⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) ) |
| 42 | zringmpg | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring ) | |
| 43 | eqid | ⊢ ( mulGrp ‘ 𝐹 ) = ( mulGrp ‘ 𝐹 ) | |
| 44 | 42 43 | rhmmhm | ⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ) |
| 45 | 41 44 | syl | ⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ) |
| 47 | 13 17 | ressbas2 | ⊢ ( ℤ ⊆ ℂ → ℤ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) ) |
| 48 | 14 47 | ax-mp | ⊢ ℤ = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) |
| 49 | eqid | ⊢ ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) = ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) | |
| 50 | 48 49 3 | mhmmulg | ⊢ ( ( ( ℤRHom ‘ 𝐹 ) ∈ ( ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) MndHom ( mulGrp ‘ 𝐹 ) ) ∧ 𝑃 ∈ ℕ0 ∧ 𝐸 ∈ ℤ ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 51 | 46 11 12 50 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝑃 ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) ) 𝐸 ) ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 52 | 6 10 | zexpcld | ⊢ ( 𝜑 → ( 𝐸 ↑ 𝑃 ) ∈ ℤ ) |
| 53 | eqid | ⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) | |
| 54 | 53 | zringsubgval | ⊢ ( ( ( 𝐸 ↑ 𝑃 ) ∈ ℤ ∧ 𝐸 ∈ ℤ ) → ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) = ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) |
| 55 | 52 6 54 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) = ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) |
| 56 | 55 | fveq2d | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) ) |
| 57 | 52 | zred | ⊢ ( 𝜑 → ( 𝐸 ↑ 𝑃 ) ∈ ℝ ) |
| 58 | 6 | zred | ⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 59 | 5 8 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 60 | 59 | nnrpd | ⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
| 61 | fermltl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐸 ∈ ℤ ) → ( ( 𝐸 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐸 mod 𝑃 ) ) | |
| 62 | 5 6 61 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐸 mod 𝑃 ) ) |
| 63 | eqidd | ⊢ ( 𝜑 → ( 𝐸 mod 𝑃 ) = ( 𝐸 mod 𝑃 ) ) | |
| 64 | 57 58 58 58 60 62 63 | modsub12d | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = ( ( 𝐸 − 𝐸 ) mod 𝑃 ) ) |
| 65 | zcn | ⊢ ( 𝐸 ∈ ℤ → 𝐸 ∈ ℂ ) | |
| 66 | 65 | subidd | ⊢ ( 𝐸 ∈ ℤ → ( 𝐸 − 𝐸 ) = 0 ) |
| 67 | 6 66 | syl | ⊢ ( 𝜑 → ( 𝐸 − 𝐸 ) = 0 ) |
| 68 | 67 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐸 − 𝐸 ) mod 𝑃 ) = ( 0 mod 𝑃 ) ) |
| 69 | 0mod | ⊢ ( 𝑃 ∈ ℝ+ → ( 0 mod 𝑃 ) = 0 ) | |
| 70 | 60 69 | syl | ⊢ ( 𝜑 → ( 0 mod 𝑃 ) = 0 ) |
| 71 | 64 68 70 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = 0 ) |
| 72 | 52 6 | zsubcld | ⊢ ( 𝜑 → ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ∈ ℤ ) |
| 73 | dvdsval3 | ⊢ ( ( 𝑃 ∈ ℕ ∧ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = 0 ) ) | |
| 74 | 59 72 73 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) mod 𝑃 ) = 0 ) ) |
| 75 | 71 74 | mpbird | ⊢ ( 𝜑 → 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) |
| 76 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 77 | 1 39 76 | chrdvds | ⊢ ( ( 𝐹 ∈ Ring ∧ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ∈ ℤ ) → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) ) |
| 78 | 38 72 77 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) ) |
| 79 | 75 78 | mpbid | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) − 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) |
| 80 | rhmghm | ⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring GrpHom 𝐹 ) ) | |
| 81 | 41 80 | syl | ⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring GrpHom 𝐹 ) ) |
| 82 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 83 | eqid | ⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) | |
| 84 | 82 53 83 | ghmsub | ⊢ ( ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring GrpHom 𝐹 ) ∧ ( 𝐸 ↑ 𝑃 ) ∈ ℤ ∧ 𝐸 ∈ ℤ ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) = ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 85 | 81 52 6 84 | syl3anc | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( ( 𝐸 ↑ 𝑃 ) ( -g ‘ ℤring ) 𝐸 ) ) = ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 86 | 56 79 85 | 3eqtr3rd | ⊢ ( 𝜑 → ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( 0g ‘ 𝐹 ) ) |
| 87 | 7 | crnggrpd | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 88 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 89 | 82 88 | rhmf | ⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
| 90 | 41 89 | syl | ⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
| 91 | 90 52 | ffvelcdmd | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 92 | 90 6 | ffvelcdmd | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) |
| 93 | 88 76 83 | grpsubeq0 | ⊢ ( ( 𝐹 ∈ Grp ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( 0g ‘ 𝐹 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 94 | 87 91 92 93 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) ( -g ‘ 𝐹 ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( 0g ‘ 𝐹 ) ↔ ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 95 | 86 94 | mpbid | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
| 96 | 95 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( ( ℤRHom ‘ 𝐹 ) ‘ ( 𝐸 ↑ 𝑃 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
| 97 | 37 51 96 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
| 98 | oveq2 | ⊢ ( 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) | |
| 99 | 98 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 100 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) | |
| 101 | 97 99 100 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐴 = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) → ( 𝑃 ↑ 𝐴 ) = 𝐴 ) |
| 102 | 4 101 | mpan2 | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) = 𝐴 ) |