This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) ) ) |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝐵 ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ↔ ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ℂ → ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) ) |
| 17 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 18 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 19 | 17 18 | mgpbas | ⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 20 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 21 | 17 20 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 22 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) | |
| 23 | 19 21 22 | mulg0 | ⊢ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = 1 ) |
| 24 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 25 | 23 24 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 0 ) ) |
| 26 | oveq1 | ⊢ ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) | |
| 27 | cnring | ⊢ ℂfld ∈ Ring | |
| 28 | 17 | ringmgp | ⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 29 | 27 28 | ax-mp | ⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
| 30 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 31 | 17 30 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 32 | 19 22 31 | mulgnn0p1 | ⊢ ( ( ( mulGrp ‘ ℂfld ) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
| 33 | 29 32 | mp3an1 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
| 34 | 33 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) ) |
| 35 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) | |
| 36 | 34 35 | eqeq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ↔ ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) ) |
| 37 | 26 36 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
| 38 | 37 | expcom | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 39 | 38 | a2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ → ( 𝑦 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝑦 ) ) → ( 𝐴 ∈ ℂ → ( ( 𝑦 + 1 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) ) |
| 40 | 4 8 12 16 25 39 | nn0ind | ⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) ) |
| 41 | 40 | impcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐵 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 ) = ( 𝐴 ↑ 𝐵 ) ) |