This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulgnn.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| ressmulgnn.2 | ⊢ 𝐴 ⊆ ( Base ‘ 𝐺 ) | ||
| ressmulgnn.3 | ⊢ ∗ = ( .g ‘ 𝐺 ) | ||
| ressmulgnn.4 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| ressmulgnn0.4 | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) | ||
| Assertion | ressmulgnn0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnn.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | ressmulgnn.2 | ⊢ 𝐴 ⊆ ( Base ‘ 𝐺 ) | |
| 3 | ressmulgnn.3 | ⊢ ∗ = ( .g ‘ 𝐺 ) | |
| 4 | ressmulgnn.4 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | ressmulgnn0.4 | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) | |
| 6 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 7 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐴 ) | |
| 8 | 1 2 3 4 | ressmulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
| 10 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ 𝐴 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | 1 11 | ressbas2 | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 13 | 2 12 | ax-mp | ⊢ 𝐴 = ( Base ‘ 𝐻 ) |
| 14 | eqid | ⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) | |
| 15 | 13 5 14 | mulg0 | ⊢ ( 𝑋 ∈ 𝐴 → ( 0 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 10 15 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 0 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 17 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 18 | 17 | oveq1d | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0 ( .g ‘ 𝐻 ) 𝑋 ) ) |
| 19 | 2 10 | sselid | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 20 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 21 | 11 20 3 | mulg0 | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 0 ∗ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 22 | 19 21 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 0 ∗ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 23 | 16 18 22 | 3eqtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 0 ∗ 𝑋 ) ) |
| 24 | 17 | oveq1d | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ∗ 𝑋 ) = ( 0 ∗ 𝑋 ) ) |
| 25 | 23 24 | eqtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑁 = 0 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |
| 26 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 27 | 26 | biimpi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 29 | 9 25 28 | mpjaodan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑁 ( .g ‘ 𝐻 ) 𝑋 ) = ( 𝑁 ∗ 𝑋 ) ) |