This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| chrid.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | ||
| chrid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | chrdvds | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ 𝑁 ↔ ( 𝐿 ‘ 𝑁 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| 2 | chrid.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 3 | chrid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | 4 5 1 | chrval | ⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 𝐶 |
| 7 | 6 | breq1i | ⊢ ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ↔ 𝐶 ∥ 𝑁 ) |
| 8 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → 𝑅 ∈ Grp ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 10 5 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 14 | eqid | ⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) | |
| 15 | 10 4 14 3 | oddvds | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑁 ∈ ℤ ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
| 16 | 9 12 13 15 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
| 17 | 7 16 | bitr3id | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ 𝑁 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
| 18 | 2 14 5 | zrhmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ 𝑁 ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑁 ) = 0 ↔ ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) ) |
| 20 | 17 19 | bitr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ 𝑁 ↔ ( 𝐿 ‘ 𝑁 ) = 0 ) ) |