This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmsub.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| ghmsub.m | ⊢ − = ( -g ‘ 𝑆 ) | ||
| ghmsub.n | ⊢ 𝑁 = ( -g ‘ 𝑇 ) | ||
| Assertion | ghmsub | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) 𝑁 ( 𝐹 ‘ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmsub.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | ghmsub.m | ⊢ − = ( -g ‘ 𝑆 ) | |
| 3 | ghmsub.n | ⊢ 𝑁 = ( -g ‘ 𝑇 ) | |
| 4 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑆 ∈ Grp ) |
| 6 | simp3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑉 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) | |
| 8 | 1 7 | grpinvcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑉 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ∈ 𝐵 ) |
| 9 | 5 6 8 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 12 | 1 10 11 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 13 | 9 12 | syld3an3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 14 | eqid | ⊢ ( invg ‘ 𝑇 ) = ( invg ‘ 𝑇 ) | |
| 15 | 1 7 14 | ghminv | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 18 | 13 17 | eqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 19 | 1 10 7 2 | grpsubval | ⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑈 − 𝑉 ) = ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) |
| 20 | 19 | fveq2d | ⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 21 | 20 | 3adant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 23 | 1 22 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 24 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ 𝑈 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ) | |
| 25 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) | |
| 26 | 24 25 | anim12dan | ⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) ) |
| 27 | 23 26 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) ) |
| 28 | 27 | 3impb | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) ) |
| 29 | 22 11 14 3 | grpsubval | ⊢ ( ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑈 ) 𝑁 ( 𝐹 ‘ 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 30 | 28 29 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) 𝑁 ( 𝐹 ‘ 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 31 | 18 21 30 | 3eqtr4d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) 𝑁 ( 𝐹 ‘ 𝑉 ) ) ) |