This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mhmmulg.s | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mhmmulg.t | ⊢ × = ( .g ‘ 𝐻 ) | ||
| Assertion | mhmmulg | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmmulg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mhmmulg.s | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mhmmulg.t | ⊢ × = ( .g ‘ 𝐻 ) | |
| 4 | fvoveq1 | ⊢ ( 𝑛 = 0 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 0 · 𝑋 ) ) ) | |
| 5 | oveq1 | ⊢ ( 𝑛 = 0 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑛 = 0 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑛 = 0 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 8 | fvoveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ) | |
| 9 | oveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 12 | fvoveq1 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) ) | |
| 13 | oveq1 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 16 | fvoveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) ) | |
| 17 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ↔ ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑛 · 𝑋 ) ) = ( 𝑛 × ( 𝐹 ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 20 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 21 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 22 | 20 21 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐻 ) ) |
| 24 | 1 20 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 27 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 28 | 1 27 | mhmf | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 30 | 27 21 3 | mulg0 | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) → ( 0 × ( 𝐹 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
| 31 | 29 30 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 0 × ( 𝐹 ‘ 𝑋 ) ) = ( 0g ‘ 𝐻 ) ) |
| 32 | 23 26 31 | 3eqtr4d | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0 · 𝑋 ) ) = ( 0 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 33 | oveq1 | ⊢ ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) | |
| 34 | mhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐺 ∈ Mnd ) | |
| 35 | 34 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 36 | simpr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) | |
| 37 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) | |
| 38 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 39 | 1 2 38 | mulgnn0p1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑚 + 1 ) · 𝑋 ) = ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 40 | 35 36 37 39 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) · 𝑋 ) = ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) ) |
| 42 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 43 | 34 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 44 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑚 ∈ ℕ0 ) | |
| 45 | simpr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 46 | 1 2 43 44 45 | mulgnn0cld | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
| 47 | 46 | an32s | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · 𝑋 ) ∈ 𝐵 ) |
| 48 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 49 | 1 38 48 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ ( 𝑚 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 50 | 42 47 37 49 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 · 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 51 | 41 50 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 52 | mhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐻 ∈ Mnd ) | |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → 𝐻 ∈ Mnd ) |
| 54 | 29 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 55 | 27 3 48 | mulgnn0p1 | ⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑚 ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 56 | 53 36 54 55 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 57 | 51 56 | eqeq12d | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 58 | 33 57 | imbitrrid | ⊢ ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 59 | 58 | expcom | ⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 60 | 59 | a2d | ⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 · 𝑋 ) ) = ( 𝑚 × ( 𝐹 ‘ 𝑋 ) ) ) → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( 𝑚 + 1 ) · 𝑋 ) ) = ( ( 𝑚 + 1 ) × ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
| 61 | 7 11 15 19 32 60 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 62 | 61 | 3impib | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
| 63 | 62 | 3com12 | ⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |