This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero rings are precisely those with characteristic not 1. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chrnzr | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ( chr ‘ 𝑅 ) ≠ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 3 | 1 2 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 4 | 3 | baib | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 5 | 1z | ⊢ 1 ∈ ℤ | |
| 6 | eqid | ⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) | |
| 8 | 6 7 2 | chrdvds | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ℤ ) → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ) ) |
| 9 | 5 8 | mpan2 | ⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ) ) |
| 10 | 6 | chrcl | ⊢ ( 𝑅 ∈ Ring → ( chr ‘ 𝑅 ) ∈ ℕ0 ) |
| 11 | dvds1 | ⊢ ( ( chr ‘ 𝑅 ) ∈ ℕ0 → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( chr ‘ 𝑅 ) = 1 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) ∥ 1 ↔ ( chr ‘ 𝑅 ) = 1 ) ) |
| 13 | 7 1 | zrh1 | ⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 14 | 13 | eqeq1d | ⊢ ( 𝑅 ∈ Ring → ( ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 0g ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 15 | 9 12 14 | 3bitr3d | ⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 1 ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 16 | 15 | necon3bid | ⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) ≠ 1 ↔ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 17 | 4 16 | bitr4d | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ NzRing ↔ ( chr ‘ 𝑅 ) ≠ 1 ) ) |