This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fermat's little theorem. When P is prime, A ^ P == A (mod P ) for any A , see theorem 5.19 in ApostolNT p. 114. (Contributed by Mario Carneiro, 28-Feb-2014) (Proof shortened by AV, 19-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fermltl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 2 | dvdsmodexp | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ∈ ℕ ∧ 𝑃 ∥ 𝐴 ) → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) | |
| 3 | 2 | 3exp | ⊢ ( 𝑃 ∈ ℕ → ( 𝑃 ∈ ℕ → ( 𝑃 ∥ 𝐴 → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) ) ) |
| 4 | 1 1 3 | sylc | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∥ 𝐴 → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 ∥ 𝐴 → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) ) |
| 6 | coprm | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐴 ↔ ( 𝑃 gcd 𝐴 ) = 1 ) ) | |
| 7 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 8 | gcdcom | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 gcd 𝐴 ) = ( 𝐴 gcd 𝑃 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 gcd 𝐴 ) = ( 𝐴 gcd 𝑃 ) ) |
| 10 | 9 | eqeq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝑃 gcd 𝐴 ) = 1 ↔ ( 𝐴 gcd 𝑃 ) = 1 ) ) |
| 11 | 6 10 | bitrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐴 ↔ ( 𝐴 gcd 𝑃 ) = 1 ) ) |
| 12 | simp2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → 𝐴 ∈ ℤ ) | |
| 13 | 1 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → 𝑃 ∈ ℕ ) |
| 14 | 13 | phicld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ϕ ‘ 𝑃 ) ∈ ℕ ) |
| 15 | 14 | nnnn0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ϕ ‘ 𝑃 ) ∈ ℕ0 ) |
| 16 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ϕ ‘ 𝑃 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) ∈ ℤ ) | |
| 17 | 12 15 16 | syl2anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) ∈ ℤ ) |
| 18 | 17 | zred | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) ∈ ℝ ) |
| 19 | 1red | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → 1 ∈ ℝ ) | |
| 20 | 13 | nnrpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → 𝑃 ∈ ℝ+ ) |
| 21 | eulerth | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) | |
| 22 | 1 21 | syl3an1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) |
| 23 | modmul1 | ⊢ ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℝ+ ) ∧ ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) · 𝐴 ) mod 𝑃 ) = ( ( 1 · 𝐴 ) mod 𝑃 ) ) | |
| 24 | 18 19 12 20 22 23 | syl221anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) · 𝐴 ) mod 𝑃 ) = ( ( 1 · 𝐴 ) mod 𝑃 ) ) |
| 25 | phiprm | ⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) | |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) = ( 𝐴 ↑ ( 𝑃 − 1 ) ) ) |
| 28 | 27 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) · 𝐴 ) = ( ( 𝐴 ↑ ( 𝑃 − 1 ) ) · 𝐴 ) ) |
| 29 | 12 | zcnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → 𝐴 ∈ ℂ ) |
| 30 | expm1t | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑃 ∈ ℕ ) → ( 𝐴 ↑ 𝑃 ) = ( ( 𝐴 ↑ ( 𝑃 − 1 ) ) · 𝐴 ) ) | |
| 31 | 29 13 30 | syl2anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( 𝐴 ↑ 𝑃 ) = ( ( 𝐴 ↑ ( 𝑃 − 1 ) ) · 𝐴 ) ) |
| 32 | 28 31 | eqtr4d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) · 𝐴 ) = ( 𝐴 ↑ 𝑃 ) ) |
| 33 | 32 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) · 𝐴 ) mod 𝑃 ) = ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) ) |
| 34 | 29 | mullidd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 35 | 34 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( 1 · 𝐴 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) |
| 36 | 24 33 35 | 3eqtr3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) |
| 37 | 36 | 3expia | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝑃 ) = 1 → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) ) |
| 38 | 11 37 | sylbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐴 → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) ) |
| 39 | 5 38 | pm2.61d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 ↑ 𝑃 ) mod 𝑃 ) = ( 𝐴 mod 𝑃 ) ) |