This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their subring evaluation at a given point A is a module homomorphism, when considering the subring algebra. (Contributed by Thierry Arnoux, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | ||
| evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| evls1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| evls1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | ||
| evls1maplmhm.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 ) | ||
| Assertion | evls1maplmhm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| 2 | evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | |
| 3 | evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | evls1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | evls1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | |
| 9 | evls1maplmhm.1 | ⊢ 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) | |
| 11 | 10 | subrgring | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Ring ) |
| 13 | 2 | ply1lmod | ⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ Ring → 𝑃 ∈ LMod ) |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 15 | 9 | sralmod | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ LMod ) |
| 16 | 6 15 | syl | ⊢ ( 𝜑 → 𝐴 ∈ LMod ) |
| 17 | 1 2 3 4 5 6 7 8 | evls1maprhm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |
| 18 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) → 𝐹 ∈ ( 𝑃 GrpHom 𝑅 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 GrpHom 𝑅 ) ) |
| 20 | 4 | a1i | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑃 ) ) |
| 21 | 3 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 22 | 9 | a1i | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝑆 ) ) |
| 23 | 3 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ 𝐵 ) |
| 24 | 6 23 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 25 | 24 3 | sseqtrdi | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 26 | 22 25 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝐴 ) ) |
| 27 | 3 26 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐴 ) ) |
| 28 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) | |
| 29 | 22 25 | sraaddg | ⊢ ( 𝜑 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐴 ) ) |
| 30 | 29 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
| 31 | 20 21 20 27 28 30 | ghmpropd | ⊢ ( 𝜑 → ( 𝑃 GrpHom 𝑅 ) = ( 𝑃 GrpHom 𝐴 ) ) |
| 32 | 19 31 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ) |
| 33 | 22 25 | srasca | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
| 34 | ovex | ⊢ ( 𝑅 ↾s 𝑆 ) ∈ V | |
| 35 | 2 | ply1sca | ⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ V → ( 𝑅 ↾s 𝑆 ) = ( Scalar ‘ 𝑃 ) ) |
| 36 | 34 35 | mp1i | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) = ( Scalar ‘ 𝑃 ) ) |
| 37 | 33 36 | eqtr3d | ⊢ ( 𝜑 → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ) |
| 38 | fveq2 | ⊢ ( 𝑝 = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ) | |
| 39 | 38 | fveq1d | ⊢ ( 𝑝 = ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) ) |
| 40 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑃 ∈ LMod ) |
| 41 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | |
| 42 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 43 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 44 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 45 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 46 | 4 43 44 45 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ 𝑈 ) |
| 47 | 40 41 42 46 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ∈ 𝑈 ) |
| 48 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) ∈ V ) | |
| 49 | 8 39 47 48 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) ) |
| 50 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 51 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑅 ∈ CRing ) |
| 52 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
| 53 | 10 3 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 54 | 24 53 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
| 55 | 36 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 56 | 54 55 | eqtr2d | ⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = 𝑆 ) |
| 57 | 56 | eqimssd | ⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⊆ 𝑆 ) |
| 58 | 57 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑘 ∈ 𝑆 ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑘 ∈ 𝑆 ) |
| 60 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) |
| 61 | 1 3 2 10 4 44 50 51 52 59 42 60 | evls1vsca | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) ‘ 𝑋 ) = ( 𝑘 ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) ) |
| 62 | 22 25 | sravsca | ⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ 𝐴 ) ) |
| 64 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → 𝑘 = 𝑘 ) | |
| 65 | fveq2 | ⊢ ( 𝑝 = 𝑥 → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ 𝑥 ) ) | |
| 66 | 65 | fveq1d | ⊢ ( 𝑝 = 𝑥 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) |
| 67 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ∈ V ) | |
| 68 | 8 66 42 67 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) |
| 69 | 68 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 70 | 63 64 69 | oveq123d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑘 ( .r ‘ 𝑅 ) ( ( 𝑂 ‘ 𝑥 ) ‘ 𝑋 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 71 | 49 61 70 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 72 | 71 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 73 | 72 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 74 | eqid | ⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) | |
| 75 | eqid | ⊢ ( ·𝑠 ‘ 𝐴 ) = ( ·𝑠 ‘ 𝐴 ) | |
| 76 | 43 74 45 4 44 75 | islmhm | ⊢ ( 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ↔ ( ( 𝑃 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ∧ ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 77 | 76 | biimpri | ⊢ ( ( ( 𝑃 ∈ LMod ∧ 𝐴 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑃 GrpHom 𝐴 ) ∧ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝑃 ) ∧ ∀ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑃 ) 𝑥 ) ) = ( 𝑘 ( ·𝑠 ‘ 𝐴 ) ( 𝐹 ‘ 𝑥 ) ) ) ) → 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ) |
| 78 | 14 16 32 37 73 77 | syl23anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 LMHom 𝐴 ) ) |