This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a homomorphism of left modules. (Contributed by Stefan O'Rear, 1-Jan-2015) (Proof shortened by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islmhm.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| islmhm.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | ||
| islmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | ||
| islmhm.e | ⊢ 𝐸 = ( Base ‘ 𝑆 ) | ||
| islmhm.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | ||
| islmhm.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | ||
| Assertion | islmhm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhm.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| 2 | islmhm.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | |
| 3 | islmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 4 | islmhm.e | ⊢ 𝐸 = ( Base ‘ 𝑆 ) | |
| 5 | islmhm.m | ⊢ · = ( ·𝑠 ‘ 𝑆 ) | |
| 6 | islmhm.n | ⊢ × = ( ·𝑠 ‘ 𝑇 ) | |
| 7 | df-lmhm | ⊢ LMHom = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) | |
| 8 | 7 | elmpocl | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ) |
| 9 | oveq12 | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑠 GrpHom 𝑡 ) = ( 𝑆 GrpHom 𝑇 ) ) | |
| 10 | fvexd | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Scalar ‘ 𝑠 ) ∈ V ) | |
| 11 | simplr | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑡 = 𝑇 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Scalar ‘ 𝑡 ) = ( Scalar ‘ 𝑇 ) ) |
| 13 | 12 2 | eqtr4di | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Scalar ‘ 𝑡 ) = 𝐿 ) |
| 14 | simpr | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑤 = ( Scalar ‘ 𝑠 ) ) | |
| 15 | simpll | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑠 = 𝑆 ) | |
| 16 | 15 | fveq2d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Scalar ‘ 𝑠 ) = ( Scalar ‘ 𝑆 ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑤 = ( Scalar ‘ 𝑆 ) ) |
| 18 | 17 1 | eqtr4di | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑤 = 𝐾 ) |
| 19 | 13 18 | eqeq12d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ( Scalar ‘ 𝑡 ) = 𝑤 ↔ 𝐿 = 𝐾 ) ) |
| 20 | 18 | fveq2d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐾 ) ) |
| 21 | 20 3 | eqtr4di | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 22 | 15 | fveq2d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 23 | 22 4 | eqtr4di | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑠 ) = 𝐸 ) |
| 24 | 15 | fveq2d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑠 ) = ( ·𝑠 ‘ 𝑆 ) ) |
| 25 | 24 5 | eqtr4di | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑠 ) = · ) |
| 26 | 25 | oveqd | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 27 | 26 | fveq2d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 28 | 11 | fveq2d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑡 ) = ( ·𝑠 ‘ 𝑇 ) ) |
| 29 | 28 6 | eqtr4di | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑡 ) = × ) |
| 30 | 29 | oveqd | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) |
| 31 | 27 30 | eqeq12d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 32 | 23 31 | raleqbidv | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 33 | 21 32 | raleqbidv | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 34 | 19 33 | anbi12d | ⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 35 | 10 34 | sbcied | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 36 | 9 35 | rabeqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 37 | ovex | ⊢ ( 𝑆 GrpHom 𝑇 ) ∈ V | |
| 38 | 37 | rabex | ⊢ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V |
| 39 | 36 7 38 | ovmpoa | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝑆 LMHom 𝑇 ) = { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 40 | 39 | eleq2d | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
| 41 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) | |
| 42 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 43 | 42 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
| 44 | 41 43 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 45 | 44 | 2ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 46 | 45 | anbi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 47 | 46 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 48 | 3anass | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 49 | 47 48 | bitr4i | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 | 40 49 | bitrdi | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 51 | 8 50 | biadanii | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |